
TRUST: StabiliTy and Safety ContRoller Synthesis for Unknown
Dynamical Models Using a Single Trajectory

Jamie Gardner

School of Computing

Newcastle University

j.gardner3@newcastle.ac.uk

Ben Wooding

School of Computing

Newcastle University

ben.wooding@newcastle.ac.uk

Amy Nejati

School of Computing

Newcastle University

amy.nejati@newcastle.ac.uk

Abolfazl Lavaei

School of Computing

Newcastle University

abolfazl.lavaei@newcastle.ac.uk

Abstract
TRUST is an open-source software tool developed for data-driven
controller synthesis of dynamical systems with unknownmathemati-

cal models, ensuring either stability or safety properties. By collect-

ing only a single input-state trajectory from the unknown system and

satisfying a rank condition that ensures the system is persistently
excited according to theWillems et al.’s fundamental lemma, TRUST
aims to design either control Lyapunov functions (CLF) or control
barrier certificates (CBC), along with their corresponding stability

or safety controllers. The tool implements sum-of-squares (SOS)

optimization programs solely based on data to enforce stability

or safety properties across four system classes: (i) continuous-time
nonlinear polynomial systems, (ii) continuous-time linear systems,
(iii) discrete-time nonlinear polynomial systems, and (iv) discrete-time
linear systems. TRUST is a Python-based web application featur-

ing an intuitive, reactive graphic user interface (GUI) built with

web technologies. It can be accessed at https://trust.tgo.dev
or installed locally, and supports both manual data entry and data

file uploads. Leveraging the power of the Python backend and a

JavaScript frontend, TRUST is designed to be highly user-friendly

and accessible across desktop, laptop, tablet, and mobile devices.

We apply TRUST to a set of physical benchmarks with unknown

dynamics, ensuring either stability or safety properties across the

four supported classes of models.

Keywords
Data-driven controller synthesis, stability and safety properties,

control Lyapunov functions, control barrier certificates, Willems et
al.’s fundamental lemma, single trajectory

1 Introduction
The formal synthesis of controllers that ensure stability or safety

of dynamical systems is a cornerstone of control theory, especially

in safety-critical applications where failures can lead to loss of

life or significant financial consequences [1]. These applications

include robotics, aerospace, autonomous vehicles, and medical de-

vices, where system reliability is paramount. Traditionally, control

synthesis has relied heavily on model-based approaches, which

require precise mathematical representations of system dynamics.

However, obtaining models with closed-form expressions of their

dynamic can be highly challenging, as the identified models may

not fully capture the complexities of real-world systems [2]. In

response to this key obstacle, direct data-driven techniques have

emerged in the literature as a compelling alternative [3]. These

techniques leverage system data to directly design controllers with-

out the need for an explicit mathematical model, offering a more

flexible and practical approach for complex dynamical systems.

While control Lyapunov functions (CLF) are essential meth-

ods for ensuring stability in dynamical systems [4], control barrier
certificates (CBC) have been introduced as a powerful method for

guaranteeing safety [5–7]. Similar to Lyapunov functions, CBCs are

defined over the system’s state space, but they focus on satisfying

specific inequalities on both the system dynamics and the function

itself. By identifying an appropriate level set of CBC, unsafe regions
can be separated from the system’s trajectories, starting from a

given set of initial conditions. As a result, the existence of such

a function not only provides formal safety certification but also

facilitates the design of a controller that enforces safety throughout

the system’s operation.

1.1 Data-Driven Techniques
Since constructing CLF or CBC typically requires precise mathemat-

ical models of the system dynamics, the development of data-driven

techniques has become crucial in control theory. Two promising

approaches in the literature offer formal controller synthesis using

collected data without relying on explicit models. The first is the

scenario approach [8, 9], which solves the problem by leveraging

collected data and then translating the results back to unknown

models using intermediate steps involving chance constraints [10].
While this method shows significant potential for providing formal

guarantees for systems with unknown models, it requires the data

to be independent and identically distributed (i.i.d.). This restric-

tion means that only one input-output data pair can be collected

from each trajectory [8], necessitating the collection of multiple
independent trajectories—potentially up to millions in real-world

scenarios—to achieve a desired confidence level, based on a well-

defined closed-form relationship between them.

An alternative to the scenario method is the non-i.i.d. trajectory-
based approach, which complements the former by requiring only

a single input-output trajectory from the unknown system over

a specific time horizon [11]. This approach utilizes the concept

of persistent excitation, where the trajectory should meet a rank

condition to sufficiently excite the system’s dynamics, as outlined

ar
X

iv
:2

50
3.

08
08

1v
1

 [
ee

ss
.S

Y
]

 1
1

M
ar

 2
02

5

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

by Willems et al.’s fundamental lemma [12]. Specifically, when

a system is persistently excited, the trajectory provides enough

information about the system’s behavior to enable its analysis. This

method is advantageous since it eliminates the need for multiple

independent trajectories, making it more practical in cases where

obtaining several distinct trajectories is challenging.

1.2 Data-Driven Literature
A substantial body of research has investigated data-driven analysis

of unknown systems using the scenario approach. This includes sta-

bility analysis of unknown systems (e.g., [13–16]), the construction
of barrier certificates (e.g., [17–20]) and finite abstractions (e.g., [21–
25]), both applied in safety verification and controller synthesis.

Additionally, there is a rich literature on data-driven methods based

on the single-trajectory approach. These approaches have been used

to ensure stability and invariance properties in unknown systems

(e.g., [26–29]) and to construct control barrier certificates for both

continuous- and discrete-time systems (e.g., [30–32]).

1.3 Related Software Tools
There are only a few software tools available for constructing either

control Lyapunov functions or (control) barrier certificates. One

such tool is the class library developed in [33], which computes

Lyapunov functions for nonlinear systems in C++. Another tool,

LyZNet [34], utilizes neural networks (NN) to learn and verify sta-

bility functions and regions of attraction, leveraging a physical

model to inform the NN. The tool FOSSIL 2.0 [35] synthesizes sta-

bility and safety barrier functions for both discrete and continuous

systems using a model-driven NN. PRoTECT [36] is another tool

that designs safety barrier certificates for discrete- and continuous-

time systems. While these tools [33–36] demonstrate significant

potential, they all require precise mathematical models of dynamical
systems to construct either stability Lyapunov functions or safety

barrier certificates, along with their corresponding controllers. This

requirement potentially contrasts with real-world scenarios where

precise system models are often unavailable, making the aforemen-

tioned tools impractical for those applications.

1.4 Central Contributions
Motivated by the central challenge of unknown system models, this

tool paper introduces the following innovative contributions:

(i) TRUST is a first-of-its-kind tool that leverages data-driven tech-
niques to synthesize stability Lyapunov functions and safety

barrier certificates, along with their corresponding controllers,

using only a single input-state trajectory from unknown sys-

tems.

(ii) TRUST leverages the sum of squares (SOS) optimization tool-

box [37], powered by MOSEK
1
, and supports four classes of

dynamical systems: (i) continuous-time nonlinear polynomial

systems (ct-NPS), (ii) continuous-time linear systems (ct-LS),

(iii) discrete-time nonlinear polynomial systems (dt-NPS), and

(iv) discrete-time linear systems (dt-LS).

(iii) Implemented as a responsive and reactive Python Flask
2
web

application, TRUST offers an intuitive, user-friendly interface,

1
https://www.mosek.com/documentation/

2
https://flask.palletsprojects.com/en/stable/

allowing users to seamlessly interact with the tool. Users can

directly access and work with the application through the web

without the need for downloads or installations.

(iv) TRUST also offers a Docker-based version that can be down-

loaded and run locally, potentially achieving higher speeds

depending on the capabilities of the local machine.

(v) The server-side Python application, built on the Flask web

framework, follows the Model-View-Controller (MVC) [38] ar-

chitecture and adheres to Test-DrivenDevelopment (TDD) [39]

practices, ensuring high-quality and maintainable code.

(vi) TRUST leverages a monolithic architecture, using InertiaJS
3

to enable real-time client-side updates and effective error han-

dling, ensuring a seamless user experience across all platforms

without the need to build a separate Application Programming

Interface (API).

(vii) The tool supports both manual data entry and data file up-

loads for collected trajectories, offering a user-friendly GUI

for inputting the required information, such as the state space,

and initial and multiple unsafe sets for designing CBC.

(viii) We demonstrate the effectiveness of TRUST through a series of
physical benchmarks, covering the four classes of dynamical

systems and showcasing their respective stability or safety

properties.

The web-based version of TRUST is accessible at:

https://trust.tgo.dev

The TRUST source code, accompanied by comprehensive installa-

tion and usage instructions for the Docker-based version, can be

accessed at:

https://github.com/Kiguli/TRUST

1.5 Notation
The symbols R, R+

0
, and R+ represent the sets of real numbers,

non-negative and positive real numbers, respectively. Similarly, the

symbols N and N+ denote the sets of natural numbers, including

and excluding zero, respectively. The notation R𝑛×𝑚 denotes a

matrix of size 𝑛 ×𝑚 with real values, while R𝑛 represents a vector

of size 𝑛. The symbols 𝐴−1
and 𝐴⊤

represent the inverse and the

transpose of matrix 𝐴 ∈ R𝑛×𝑛 , respectively. The notation [𝑎, 𝑏]
refers to the closed interval between 𝑎 and 𝑏. The identity matrix

in R𝑛×𝑛 is denote by I𝑛 . We denote a symmetric positive-definite
matrix 𝑃 ∈ R𝑛×𝑛 as 𝑃 ≻ 0.

2 Overview of TRUST
Modes of the Tool. TRUST is capable of solving two main types

of control problems:

(i) Stability problems – synthesizing a control Lyapunov func-

tion and its corresponding controller to enforce the stability

of the unknown system. The stability property implies that as

time approaches infinity, the system’s trajectories converge

to the origin, which serves as the equilibrium point.

(ii) Safety problems – synthesizing a control barrier certificate

and its corresponding controllers to ensure the safe behavior

of the unknown system. The safety property ensures that the

system’s trajectories, starting from an initial region, do not

3
https://inertiajs.com/

https://trust.tgo.dev
https://github.com/Kiguli/TRUST

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

reach (potentially multiple) unsafe regions within an infinite

time horizon.

Classes of Systems. TRUST can support four classes of systems:
(i) continuous-time nonlinear polynomial systems (ct-NPS), (ii)

continuous-time linear systems (ct-LS), (iii) discrete-time nonlinear

polynomial systems (dt-NPS), and (iv) discrete-time linear systems

(dt-LS). For each of these system classes, TRUST can synthesize

both CLF and CBC, along with their respective stability and safety

controllers.

Datasets (*.csv, *.txt, *.json). TRUST accepts input datasets

that include a persistently excited data trajectory, which should

be provided in one of the following common file formats: *.csv,
*.txt, or *.json. For discrete-time systems, the data should be

collected over a time horizon [0, 1, . . . ,𝑇 − 1], where 𝑇 ∈ N+ is the

number of collected samples:

U𝑑
0
= [𝑢 (0), 𝑢 (1), 𝑢 (2), . . . , 𝑢 (𝑇 − 1)] ∈ R𝑚×𝑇 , (1a)

X𝑑
0
= [𝑥 (0), 𝑥 (1), 𝑥 (2), . . . , 𝑥 (𝑇 − 1)] ∈ R𝑛×𝑇 , (1b)

X𝑑
1
= [𝑥 (1), 𝑥 (2), 𝑥 (3), . . . , 𝑥 (𝑇)] ∈ R𝑛×𝑇 , (1c)

N𝑑
0
= [M(𝑥 (0)),M(𝑥 (1)), . . . ,M(𝑥 (𝑇 − 1))] ∈ R𝑁×𝑇 , (1d)

where 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚 are the state and input variables of

the system. Moreover, M(𝑥) ∈ R𝑁 is a vector of monomials in

state 𝑥 ∈ R𝑛 , which shapes the dynamics of nonlinear polynomial

systems. We call the collected data in (1a)-(1c) a single input-state
trajectory. Note that the trajectory N𝑑

0
in (1d) is constructed from

the trajectoryX𝑑
0
and the form of the monomial vectorM(𝑥) ∈ R𝑁 .

Similarly, the continuous-time data can be collected over the

time interval [𝑡0, 𝑡0 + (𝑇 − 1)𝜏], with 𝑇 ∈ N+ being the number of

collected samples, and 𝜏 ∈ R+ as the sampling time:

U𝑐
0
= [𝑢 (𝑡0), 𝑢 (𝑡0 + 𝜏), . . . , 𝑢 (𝑡0 + (𝑇 − 1)𝜏)] ∈ R𝑚×𝑇 , (2a)

X𝑐
0
= [𝑥 (𝑡0), 𝑥 (𝑡0 + 𝜏), . . . , 𝑥 (𝑡0 + (𝑇 − 1)𝜏)] ∈ R𝑛×𝑇 , (2b)

X𝑐
1
= [¤𝑥 (𝑡0), ¤𝑥 (𝑡0 + 𝜏), . . . , ¤𝑥 (𝑡0 + (𝑇 − 1)𝜏)] ∈ R𝑛×𝑇 , (2c)

N𝑐
0
= [M(𝑥 (𝑡0)) . . . M(𝑥 (𝑡0 + (𝑇 − 1)𝜏))] ∈ R𝑁×𝑇 . (2d)

To establish the theoretical aspects of the single-trajectory ap-

proach, it is required that the trajectoriesN𝑐
0
andN𝑑

0
for nonlinear

polynomial cases, and X𝑐
0
and X𝑑

0
for linear cases, have full row-

rank (cf. Lemmas 3.2, 3.6, 4.2 for different cases). To ensure this, the

number of samples 𝑇 must be greater than 𝑁 in nonlinear cases

and 𝑛 in linear scenarios. Given that N𝑐
0
, N𝑑

0
, X𝑐

0
and X𝑑

0
are all

derived from sampled data, this condition can be readily verified

during data collection. This approach avoids explicitly identifying

the system, which would otherwise require

[
U𝑑

0

X𝑑
0

]
(for discrete-time

linear systems) to be full row-rank, see [40].

TRUST automatically verifies that the collected data satisfies the

following rank condition, ensuring that the data is persistently ex-

cited [11, 12]. In case the collected data does not fulfill the required

full row-rank condition, the tool will return an error to the user

stating: “Error: The collected data must be full row-rank”.
Outputs. The outputs of TRUST depend on the selected mode. For

stability problems, TRUST aims to return a CLFV(𝑥) alongwith the
corresponding stability controller, both derived from the collected

data. For safety problems, it provides a CBC B(𝑥), along with its

initial and unsafe level sets, 𝛾 and 𝜆, as well as the corresponding

safety controller, all based on the data. If the tool is unable to

synthesize either, TRUST will return an error message and guide

the user on potential issues.

3 Data-Driven Results for Continuous-Time
Systems

Here, we present the corresponding results for the data-driven

safety and stability controller synthesis of continuous-time systems

with both nonlinear polynomial and linear dynamics. Since our

work is a tool paper, we aim to focus on the features and implemen-

tation of the software, while we refer to the existing literature for

the technical details of the data-driven approach. We remind the

reader that the collected data used in this section follows the form

described in (2).

3.1 Safety and Stability of ct-NPS
We consider continuous-time nonlinear polynomial systems defined

as follows.

Definition 3.1. [ct-NPS] A continuous-time nonlinear polyno-

mial system (ct-NPS) is described by

Σ𝑐 : ¤𝑥 = 𝐴M(𝑥) + 𝐵𝑢, (3)

where 𝐴 ∈ R𝑛×𝑁 and 𝐵 ∈ R𝑛×𝑚 are unknown system and control

matrices, M(𝑥) ∈ R𝑁 is a vector of monomials in state 𝑥 ∈ 𝑋 , and
𝑢 ∈ 𝑈 is a control input, with 𝑋 ⊂ R𝑛 , and𝑈 ⊂ R𝑚 being the state

and input sets, respectively.

The following lemma, taken from [30, 41], offers a data-based

representation of closed-loop ct-NPS (3.1) with a controller 𝑢 =

𝐾 (𝑥)M(𝑥), where 𝐾 (𝑥) ∈ R𝑚×𝑁
is a matrix polynomial.

Lemma 3.2 (Data-based Representation of ct-NPS [30, 41]).
Let 𝑄 (𝑥) be a (𝑇 × 𝑁) matrix polynomial such that

I𝑁 = N𝑐
0
𝑄 (𝑥), (4)

with N𝑐
0
as in (2d) being an (𝑁 × 𝑇) full row-rank matrix. If one

synthesize 𝑢 = 𝐾 (𝑥)M(𝑥) = U𝑐
0
𝑄 (𝑥)M(𝑥), then the closed-loop

system ¤𝑥 = 𝐴M(𝑥) +𝐵𝑢 has the following data-based representation:

¤𝑥 = X𝑐
1
𝑄 (𝑥)M(𝑥), equivalently, 𝐴 + 𝐵𝐾 (𝑥) = X𝑐

1
𝑄 (𝑥). (5)

Using the above lemma, one can obtain a data-driven represen-

tation of ct-NPS with unknown matrices 𝐴 and 𝐵 as X𝑐
1
𝑄 (𝑥)M(𝑥),

which will be employed to design controllers for both CBC and

CLF in the following theorems. It is worth noting that to ensure

N𝑐
0
has full row rank, the number of samples𝑇 must exceed 𝑁 [41],

a condition that can be readily fulfilled during data collection.

The following theorem, borrowed from [30, Theorem 8], lever-

ages the data-driven representation of ct-NPS from Lemma 3.2 to

design a CBC B(𝑥) = M(𝑥)⊤𝑃M(𝑥), with 𝑃 ∈ R𝑁×𝑁 ≻ 0, and a

safety controller 𝑢 = U𝑐
0
𝑄 (𝑥)M(𝑥) based on the collected data.

Theorem 3.3 (Data-Driven CBC for ct-NPS [30]). Consider
the ct-NPS in (3) with unknown matrices 𝐴, 𝐵, and its data-based
representation ¤𝑥 = X𝑐

1
𝑄 (𝑥)M(𝑥). Let 𝑋𝐼 , 𝑋𝑂 ⊂ 𝑋 represent the

initial and unsafe regions of the ct-NPS, respectively. Suppose there

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

Algorithm 1 Data-driven design of CBC and safety controller for

ct-NPS
Require: Regions of interest 𝑋,𝑋𝐼 , 𝑋𝑂 , collected trajectories

U𝑐
0
,X𝑐

0
,X𝑐

1
, a choice of monomialsM(𝑥)1

1: Check that the full row-rank condition for N𝑐
0
is satisfied

2: Solve (6a) and (7c) for 𝑃 and 𝐻 (𝑥) simultaneously
2

3: Given the constructed 𝐻 (𝑥), solve (7a) and (7b) to design level

sets 𝛾 and 𝜆, where 𝜆 > 𝛾

Ensure: CBC B(𝑥) = M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥) and its corre-

sponding safety controller 𝑢 = U𝑐
0
𝐻 (𝑥) [N𝑐

0
𝐻 (𝑥)]−1M(𝑥)

exist constants 𝛾, 𝜆 ∈ R+, with 𝜆 > 𝛾 , and a matrix polynomial
𝐻 (𝑥) ∈ R𝑇×𝑁 such that the following constraints are fulfilled:

N𝑐
0
𝐻 (𝑥) = 𝑃−1, with 𝑃 ≻ 0, (6a)

M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥) ≤ 𝛾, ∀𝑥 ∈ 𝑋𝐼 , (6b)

M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥) ≥ 𝜆, ∀𝑥 ∈ 𝑋𝑂 , (6c)

−[𝜕M
𝜕𝑥

X𝑐
1
𝐻 (𝑥) + 𝐻 (𝑥)⊤X𝑐⊤

1
(𝜕M
𝜕𝑥

)⊤] ≥ 0, ∀𝑥 ∈ 𝑋 . (6d)

Then B(𝑥) = M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥) is a CBC and𝑢 = U𝑐

0
𝐻 (𝑥)

[N𝑐
0
𝐻 (𝑥)]−1M(𝑥) is its corresponding safety controller for the un-

known ct-NPS, ensuring that any trajectory of the ct-NPS starting
from 𝑋𝐼 will not reach 𝑋𝑂 within an infinite time horizon.

The following lemma, borrowed from [30, Corollary 11], reformu-

lates conditions (6a)-(6d) as sum-of-squares (SOS) optimization pro-

grams, assuming that the regions of interest,𝑋 ,𝑋𝐼 , and𝑋𝑂 , are semi-

algebraic [42]. Specifically, a semi-algebraic set𝑋 ⊆ R𝑛 is described

by a vector of polynomials 𝑎(𝑥), meaning𝑋 = {𝑥 ∈ R𝑛 | 𝑎(𝑥) ≥ 0},
with the inequalities applied element-wise.

Lemma 3.4 (Data-Driven SOS Reformulation of CBC for
ct-NPS [30]). Consider the state set 𝑋 , the initial set 𝑋𝐼 , and the
unsafe set 𝑋𝑂 as semi-algebraic sets, each defined by vectors of poly-
nomial inequalities 𝑔(𝑥), 𝑔𝐼 (𝑥), and 𝑔𝑂 (𝑥), respectively. Suppose
there exist constants 𝛾, 𝜆 ∈ R+, with 𝜆 > 𝛾 , a matrix polynomial
𝐻 ∈ R𝑇×𝑁 , and vectors of SOS polynomials 𝐿𝐼 (𝑥), 𝐿𝑂 (𝑥), and 𝐿(𝑥)
such that the following conditions

−M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥)−𝐿⊤𝐼 (𝑥)𝑔𝐼 (𝑥) + 𝛾, (7a)

M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥)−𝐿⊤𝑂 (𝑥)𝑔𝑂 (𝑥) − 𝜆, (7b)

−[𝜕M
𝜕𝑥

X𝑐
1
𝐻 (𝑥) + 𝐻 (𝑥)⊤X𝑐⊤

1
(𝜕M
𝜕𝑥

)⊤]−𝐿⊤ (𝑥)𝑔(𝑥). (7c)

are all SOS polynomials, while condition (6a) is also fulfilled. Then,
B(𝑥) = M(𝑥)⊤ [N0

𝑐𝐻 (𝑥)]−1M(𝑥) is a CBC, and 𝑢 = U0
𝑐𝐻 (𝑥)

[N𝑐
0
𝐻 (𝑥)]−1M(𝑥) is its corresponding safety controller for the un-

known ct-NPS.

1
The selection of M(𝑥) is the choice of the user. Based on the foundational work [11],

if an upper bound on the maximum degree of M(𝑥) can be inferred using physical

insights about the unknown system, M(𝑥) should be chosen to encompass all possible

combinations of states up to that upper bound. This ensures that M(𝑥) potentially
contains all monomial terms present in the actual unknown system.

2
To satisfy condition (6a), we define 𝑍 = 𝑃−1

and enforce that it is a symmetric
positive-definite matrix, i.e., 𝑍 ≻ 0. Once condition (6a) is met and 𝑍 is designed, the

matrix 𝑃 is computed as the inverse of 𝑍 , i.e., 𝑃 = 𝑍 −1
.

Algorithm 2 Data-driven design of CLF and stability controller for

ct-NPS
Require: Collected trajectoriesU𝑐

0
,X𝑐

0
,X𝑐

1
, a choice of monomials

M(𝑥)
1: Check that the full row-rank condition for N𝑐

0
is satisfied

2: Solve (8a) and (8b) for 𝑃 and 𝐻 (𝑥) simultaneously

Ensure: CLF V(𝑥) = M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥) and its corre-

sponding stability controller 𝑢 = U𝑐
0
𝐻 (𝑥) [N𝑐

0
𝐻 (𝑥)]−1M(𝑥)

Remark 1. To accommodate an arbitrary number of unsafe re-
gions𝑋𝑂𝑖

, where 𝑖 ∈ {1, . . . , 𝑧}, condition (7b) should be repeated and
enforced for each distinct unsafe region, a capability fully supported
by TRUST.

Algorithm 1 outlines the necessary steps for designing a CBC

and its corresponding safety controller based solely on data.

The following theorem, borrowed from [41, Theorem 1], provides

the required conditions for designing a CLFV(𝑥) = M(𝑥)⊤𝑃M(𝑥),
with 𝑃 ≻ 0, along with a stability controller 𝑢 = U𝑐

0
𝑄 (𝑥)M(𝑥)

based on collected data.

Theorem 3.5 (Data-Driven CLF for ct-NPS [41]). Consider
the ct-NPS in (3) with unknown matrices 𝐴, 𝐵, and its data-based
representation ¤𝑥 = X𝑐

1
𝑄 (𝑥)M(𝑥). Suppose there exists a polynomial

matrix 𝐻 (𝑥) ∈ R𝑇×𝑁 such that the following constrains are satisfied:

N𝑐
0
𝐻 (𝑥) = 𝑃−1, with 𝑃 ≻ 0, (8a)

−[𝜕M
𝜕𝑥

X𝑐
1
𝐻 (𝑥) + 𝐻 (𝑥)⊤X𝑐⊤

1
(𝜕M
𝜕𝑥

)⊤] ≻ 0 (8b)

Then,V(𝑥) = M(𝑥)⊤ [N𝑐
0
𝐻 (𝑥)]−1M(𝑥) is a CLF, and𝑢 = U𝑐

0
𝐻 (𝑥)

[N𝑐
0
𝐻 (𝑥)]−1M(𝑥) is its corresponding stability controller for the un-

known ct-NPS, ensuring that any trajectory of the ct-NPS converges
to the origin as its equilibrium point when time approaches infinity.

The pseudocode for constructing the CLF and its corresponding

stability controllers for ct-NPS is outlined in Algorithm 2.

Graphical User Interface (GUI) in TRUST. To maximize accessi-

bility and ensure a highly user-friendly experience, TRUST offers an
intuitive, accessible and responsive GUI which utilizes web-based

technologies to enable its use without the user having to download

or install an application. The GUI enhances usability by abstracting

the underlying technical complexities, allowing users to construct

either a CLF or CBC using data through a reactive push-button
interface. Note that for more demanding use cases, or where the

data is private, the tool can also be installed on local hardware via

Docker. While TRUST provides GUIs for all four system classes,

each focusing on either stability or safety properties, we only depict

it for dt-NPS (see Subsection 4.1), as it offers the most comprehensive
inputs to the GUI (see Figure 1). Labels in this figure are referenced

with < · >.
As noted earlier, this iteration of TRUST relies on external pack-

ages which require a license for their use of MOSEK. Users must

upload their license to run the tool < 1 >. Note that the license

is not stored; it is only used on a per-session basis, meaning users

must re-upload their license for each new session. Moreover, future

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

Figure 1: TRUST GUI with numbered annotations indicating respective sections.

iterations of the tool are anticipated to include optimal implemen-

tations of other solvers; https://cvxopt.org/ is already supported

by our tool, but given the recognition and performance of MOSEK,

as well as the free academic license available, we have focused

on optimizing the tool to utilize MOSEK. As future iterations are

released, the GUI will include the additional input option to select

a preferred solver.

TRUST supports both discrete-time and continuous-time system

classes < 2 > as well as linear and nonlinear polynomial models

< 3 >. It can design controllers to enforce either stability or safety

properties < 4 >. Users may upload datasets for X0,U0, and X1or

enter them manually < 5 >. A link to the tool’s source code is

provided in the footer < 6 >. The GUI is dynamically rendered,

hiding unnecessary elements to avoid user confusion.

The system dimension is automatically detected based on the

shape of X0 < 7 >. For nonlinear polynomial systems, users must

specify the monomialsM(𝑥) < 8 >, separated by semicolons. Note

that SymPy notation requires “∗” for multiplication and “∗∗” for
exponents. For dt-NPS, users also need to define their desired Θ(𝑥)
(cf. (16)) in < 9 >. If desired, users can enable an “autofill” option for

Θ(𝑥) in < 9 >, allowing TRUST to automatically compute its value

(cf. Remark 2). If the property is safety, TRUST uses hypercubes to

define the state space < 10 >, initial sets < 11 >, and one or more

unsafe sets < 12 >, with both lower and upper bounds required for

each dimension. For stability properties, items < 10 > − < 12 >

are hidden.

Finally, the output is displayed in the far-right section, showing

a brief summary with the total computation time and peak memory

usage < 13 >. If TRUST fails to find a valid solution, this is promi-

nently displayed in red in the “INFO” section, and no other output is

shown. For successful runs, the CLF or CBC is designed, along with

the underlying matrix 𝑃 < 14 >. This is followed by the controller,

including the matrix 𝐻 < 15 >. For the CBC, the designed level

sets are also displayed < 16 >. All results are formatted in Python

syntax.

To run the tool, the user clicks the “Calculate” button to initiate

computation or “Reset” to clear their input < 17 >. The keyboard

shortcut Cmd+Enter or Ctrl+Enter, depending on the operating

system, can also start the computation.

Folder Structure in TRUST. Built with industry-standard soft-

ware engineering practices, TRUST follows the typical Model-View-

Controller folder structure. The root directory contains essential

files such as the project LICENSE, a README.md, and configuration

documents including docker-compose.yml, requirements.txt,
and the .env setup file. The core application logic is organized

within the app folder, housing controller classes in http/controllers/
and data models inmodels/. For the frontend GUI, the vite directory
includes the HTML, CSS, and VueJS files, along with configuration

settings for building UI components. While the tool does not use a

database, storage needs are handled by the storage directory. Unit
tests are structured under tests/, ensuring comprehensive cover-

age across components. Docker configurations and startup scripts

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

are located in the docker folder, enabling straightforward deploy-

ment via Dockerfiles and Compose files. This structure not only

enhances maintainability but also leverages modern development

practices to streamline integration and testing processes.

1 TRUST/

2 - LICENSE

3 - README.md

4 - app/

5 - http/

6 - controllers/

7 - dashboard_controller.py

8 - models/

9 - __init__.py

10 - barrier.py

11 - safety_barrier.py

12 - stability.py

13 - docker/

14 - flask

15 - Dockerfile

16 - start -container

17 - supervisord.conf

18 - docker -compose.yml

19 - main.py

20 - node_modules/

21 - requirements.txt

22 - storage/

23 - tests/

24 - __init__.py

25 - http/

26 - models/

27 - pytest.ini

28 - vite/

29 - css/

30 - index.html

31 - js/

32 - main.js

33 - node_modules/

34 - package -lock.json

35 - package.json

36 - postcss.config.js

37 - tailwind.config.js

38 - vite.config.js

Listing 1: Folder Structure in TRUST.

Error Handling. TRUST is developed as a responsive and reactive

Python Flask web application, offering an intuitive, user-friendly
interface that allows seamless interaction. If a user error occurs,

TRUST provides responsive error messages to guide the user in

correcting their input. Listed below are some common errors that

may be returned to the user:

(i) For an invalid “state space”, “initial set” or “unsafe set(s)”:

“Provided spaces are not valid. Please provide valid lower and
upper bounds”.

(ii) For an invalid shape of Θ(𝑥): “Theta_x should be of shape (N,
n)”.

(iii) If monomials are provided with commas: “Monomial terms
should be split by semicolon” ; if they are not suitable for the

set dimensions: “Monomials must be in terms of x1 (to xn)” ;
if some unspecified error has occurred with the monomials:

“Invalid monomial terms”.
(iv) If the rank condition is not met for nonlinear polynomial

systems: “The number of samples, T, must be greater than the

number of monomial terms, N”, or “The N0 data is not full row-
rank”, depending on which part of the rank condition failed.

Similarly for linear systems: “The number of samples, T, must
be greater than the number of states, n”, or “The X0 data is not
full row-rank”, again depending on which part of the rank

condition failed.

(v) If data files are uploaded with an invalid format: “Unable to
parse uploaded file(s)”.

(vi) If theMOSEK solver cannot find a solution for the given values:

“Solution Failure”, with a dynamic error description provided

by the solver. If the MOSEK solver did find a solution but the

solution does not contain an SOS decomposition: “No SOS
decomposition found” with a dynamic error description. Sim-

ilarly, if the solution does not contain valid SOS constraints:

“Constraints are not sum-of-squares”.
(vii) Any other errors in the tool will be caught with the generic

error message: “An unknown error occurred” and a brief de-

scription that can be reported.

3.2 Safety and Stability of ct-LS
We consider continuous-time linear systems (ct-LS) defined as

Σ𝑐 : ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 (9)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are both unknown, and 𝑥 ∈ 𝑋 and

𝑢 ∈ 𝑈 represent the system’s state and control input, respectively,

with 𝑋 ⊂ R𝑛 and𝑈 ⊂ R𝑚 being the state and input sets.

The following lemma, borrowed from [11], provides a data-based

representation of closed-loop ct-LS with a controller𝑢 = 𝐾𝑥 , where

𝐾 ∈ R𝑚×𝑛
.

Lemma 3.6 (Data-based Representation of ct-LS [11]). Let 𝑄
be a (𝑇 × 𝑛) matrix such that

I𝑛 = X𝑐
0
𝑄, (10)

with X𝑐
0
being a full row-rank matrix. If one synthesizes 𝑢 = 𝐾𝑥 =

U𝑐
0
𝑄𝑥 , then the closed-loop system ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 has the following

data-based representation:

¤𝑥 = X𝑐
1
𝑄𝑥, equivalently, 𝐴 + 𝐵𝐾 = X𝑐

1
𝑄. (11)

The following theorem, adapted from [43], utilizes the data-

driven representation of ct-LS from Lemma 3.6 to design a CBC

B(𝑥) = 𝑥⊤𝑃𝑥 , with 𝑃 ≻ 0, and a safety controller 𝑢 = U𝑐
0
𝑄𝑥 based

on the collected data.

Theorem 3.7 (Data-Driven CBC for ct-LS [43]). Consider the
ct-LS in (9) with unknown matrices 𝐴, 𝐵, and its data-based rep-
resentation ¤𝑥 = X𝑐

1
𝑄𝑥 . Let 𝑋𝐼 , 𝑋𝑂 ⊂ 𝑋 represent the initial and

unsafe regions of the ct-NPS, respectively. Suppose there exist con-
stants 𝛾, 𝜆 ∈ R+, with 𝜆 > 𝛾 , and a matrix 𝐻 ∈ R𝑇×𝑛 such that the
following constraints are fulfilled:

X𝑐
0
𝐻 = 𝑃−1, with 𝑃 ≻ 0, (12a)

𝑥⊤ [X𝑐
0
𝐻]−1𝑥 ≤ 𝛾, ∀𝑥 ∈ 𝑋𝐼 , (12b)

𝑥⊤ [X𝑐
0
𝐻]−1𝑥 ≥ 𝜆, ∀𝑥 ∈ 𝑋𝑂 , (12c)

−[X𝑐
1
𝐻 + 𝐻⊤X𝑐⊤

1
] ≥ 0. (12d)

Then B(𝑥) = 𝑥⊤ [X𝑐
0
𝐻]−1𝑥 is a CBC and 𝑢 = U𝑐

0
𝐻 [X𝑐

0
𝐻]−1𝑥 is its

corresponding safety controller for the unknown ct-LS.

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

Algorithm 3 Data-driven design of CBC and safety controller for

ct-LS
Require: Regions of interest 𝑋,𝑋𝐼 , 𝑋𝑂 , collected trajectories

U𝑐
0
,X𝑐

0
,X𝑐

1

1: Check that the full row-rank condition for X𝑐
0
is satisfied

2: Solve (12a) and (12d) for 𝑃 and 𝐻 , simultaneously, using SDP

solvers

3: Given the constructed 𝐻 , solve (12b) and (12c) via SOS opti-

mization to design 𝛾 and 𝜆, where 𝜆 > 𝛾

Ensure: CBC B(𝑥) = 𝑥⊤ [X𝑐
0
𝐻]−1𝑥 and its corresponding safety

controller 𝑢 = U𝑐
0
𝐻 [X𝑐

0
𝐻]−1𝑥

Since condition (12d) for the ct-LS reduces to a linear matrix

inequality (LMI), it can be solved using semidefinite programming

(SDP) solvers such as SeDuMi [44]. Algorithm 3 details the steps

required to design a CBC and its safety controller based entirely on

data for ct-LS.

The following theorem, borrowed from [11], provides the re-

quired conditions for designing a CLF V(𝑥) = 𝑥⊤𝑃𝑥 with 𝑃 ≻ 0,

along with a stability controller 𝑢 = U𝑐
0
𝑄𝑥 based on collected data.

Theorem 3.8 (Data-Driven CLF for ct-LS [11]). Consider
the ct-LS in (9) with unknown matrices 𝐴, 𝐵, and its data-based
representation ¤𝑥 = X𝑐

1
𝑄𝑥 . Suppose there exists a matrix 𝐻 ∈ R𝑇×𝑛

such that the following constrains are satisfied:

X𝑐
0
𝐻 = 𝑃−1, with 𝑃 ≻ 0, (13a)

X𝑐
1
𝐻 + 𝐻⊤X𝑐⊤

1
≺ 0. (13b)

Then V(𝑥) = 𝑥⊤ [X𝑐
0
𝐻]−1𝑥 is a CLF and 𝑢 = U𝑐

0
𝐻 [X𝑐

0
𝐻]−1𝑥 is its

corresponding stability controller for the unknown ct-LS.

The pseudocode for designing a CLF and its stability controller

for ct-LS is provided in Algorithm 4.

TRUST Implementation for ct-LS. For the ct-LS, inputs <8>
and <9> in Figure 1 are hidden, as they are not required.

4 Data-Driven Results for Discrete-Time
Systems

We now present the corresponding results for the data-driven safety

and stability controller synthesis of discrete-time systems with both

nonlinear polynomial and linear dynamics. We remind the reader

that the collected data used in this section follows the form de-

scribed in (1).

4.1 Safety and Stability of dt-NPS
Definition 4.1 (dt-NPS). A discrete-time nonlinear polynomial

system (dt-NPS) is described by

Σ𝑑 : 𝑥+ = 𝐴M(𝑥) + 𝐵𝑢, (14)

where 𝐴 ∈ R𝑛×𝑁 and 𝐵 ∈ R𝑛×𝑚 are both unknown, M(𝑥) ∈ R𝑁
is a vector of monomials in state 𝑥 ∈ 𝑋 , and 𝑢 ∈ 𝑈 is a control

input, with 𝑋 ⊂ R𝑛 and 𝑈 ⊂ R𝑚 being the state and input sets,

respectively. Note that 𝑥+ denotes the state one step ahead, i.e.,
𝑥 (𝑘 + 1), where 𝑘 ∈ N.

We nowpresent the following lemma, borrowed from [31, Lemma

3.2], to obtain a data-based representation of closed-loop dt-NPS

Algorithm 4 Data-driven design of CLF and stability controller for

ct-LS
Require: Collected trajectories U𝑐

0
,X𝑐

0
,X𝑐

1

1: Check that the full row-rank condition for X𝑐
0
is satisfied

2: Solve (13a) and (13b) for 𝑃 and 𝐻 , simultaneously, using SDP

solvers

Ensure: CLFV(𝑥) = 𝑥⊤ [X𝑐
0
𝐻]−1𝑥 and its corresponding stability

controller 𝑢 = U𝑐
0
𝐻 [X𝑐

0
𝐻]−1𝑥

in (14) with a controller𝑢 = 𝐾 (𝑥)𝑥 , where𝐾 (𝑥) ∈ R𝑚×𝑛
is a matrix

polynomial.

Lemma 4.2 (Data-based Representation of dt-NPS [31]). Let
𝑄 (𝑥) be a (𝑇 × 𝑛) matrix polynomial such that

Θ(𝑥) = N𝑑
0
𝑄 (𝑥), (15)

where Θ(𝑥) is an (𝑁 × 𝑛) matrix polynomial such that

M(𝑥) = Θ(𝑥)𝑥, (16)

andN𝑑
0
is an (𝑁×𝑇) full row-rankmatrix as in (1d). If one synthesizes

𝑢 = 𝐾 (𝑥)𝑥 = U𝑑
0
𝑄 (𝑥)𝑥 , then the closed-loop system 𝑥+ = 𝐴M(𝑥) +

𝐵𝑢 has the following data-based representation:

𝑥+ = X𝑑
1
𝑄 (𝑥)𝑥, equivalently 𝐴Θ(𝑥) +𝐵𝐾 (𝑥) = X𝑑

1
𝑄 (𝑥) . (17)

Using the above lemma, we now have a data-driven represen-

tation of dt-NPS in the form X𝑑
1
𝑄 (𝑥)𝑥 , which is utilized to design

a CBC and its safety controller, as outlined in the following theo-

rems [31, Theorem 3.5].

Theorem 4.3 (Data-Driven CBC for dt-NPS [31]). Consider
the dt-NPS in (14) with unknown matrices 𝐴, 𝐵, and its data-based
representation 𝑥+ = X𝑑

1
𝑄 (𝑥)𝑥 . Let 𝑋𝐼 , 𝑋𝑂 ⊂ 𝑋 represent the initial

and unsafe regions of the dt-NPS, respectively. Suppose there exist
constants 𝛾, 𝜆 ∈ R+, with 𝜆 > 𝛾 , and a matrix polynomial 𝐻 (𝑥) ∈
R𝑇×𝑛 such that the following constraints are fulfilled:

N𝑑
0
𝐻 (𝑥) = Θ(𝑥)𝑃−1, with 𝑃 ≻ 0, (18a)

𝑥⊤ [Θ†N𝑑
0
𝐻 (𝑥)]−1𝑥 ≤ 𝛾, ∀𝑥 ∈ 𝑋𝐼 , (18b)

𝑥⊤ [Θ†N𝑑
0
𝐻 (𝑥)]−1𝑥 ≥ 𝜆, ∀𝑥 ∈ 𝑋𝑂 , (18c)[

𝑃−1 X𝑑
1
𝐻 (𝑥)

𝐻 (𝑥)⊤X𝑑⊤
1

𝑃−1

]
≥ 0, ∀𝑥 ∈ 𝑋 . (18d)

ThenB(𝑥) = 𝑥⊤ [Θ†N𝑑
0
𝐻 (𝑥)]−1𝑥 is a CBC and𝑢 = U𝑑

0
𝐻 (𝑥) [Θ†N𝑑

0

𝐻 (𝑥)]−1𝑥 is its corresponding safety controller for the unknown dt-
NPS, with Θ† being the left pseudoinverse of Θ.

The SOS optimization program can be applied to enforce condi-

tions (18a)-(18d), similar to those in Lemma 3.4. The corresponding

pseudocode for designing a CBC and its safety controller is provided

in Algorithm 5.

Remark 2. Note that the choice of Θ(𝑥) satisfying the equality
condition in (16) is not unique, and different choices may influence the
proposed conditions in Theorem 4.3. To accommodate this flexibility,
we allow the user to input this Θ(𝑥) as an additional parameter
(see < 9 > in Figure 1). Alternatively, the user can enable the autofill
option, prompting the tool to solve (16) and designΘ(𝑥) automatically.

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

Algorithm 5 Data-driven design of CBC and safety controller for

dt-NPS
Require: Regions of interest 𝑋,𝑋𝐼 , 𝑋𝑂 , collected trajectories

U𝑑
0
,X𝑑

0
,X𝑑

1
, a choice of monomialsM(𝑥)

1: Check that the full row-rank condition for N𝑑
0
is satisfied

2: Provide Θ(𝑥) or select the autofill option to let TRUST solve it

based on (16)

3: Solve (18a) and (18d) for 𝑃 and 𝐻 (𝑥), simultaneously
3

4: Given the constructed 𝐻 (𝑥), solve (18b) and (18c) to design 𝛾

and 𝜆, where 𝜆 > 𝛾

Ensure: CBC B(𝑥) = 𝑥⊤ [Θ†N𝑑
0
𝐻 (𝑥)]−1𝑥 and its corresponding

safety controller 𝑢 = U𝑑
0
𝐻 (𝑥) [Θ†N𝑑

0
𝐻 (𝑥)]−1𝑥

The following theorem, adapted from [31], provides the sufficient

conditions for designing a CLF V(𝑥) = 𝑥⊤𝑃𝑥 , with 𝑃 ≻ 0, along

with a stability controller 𝑢 = U𝑑
0
𝑄 (𝑥)𝑥 based on collected data.

Theorem 4.4 (Data-Driven CLF for dt-NPS [31]). Consider
the dt-NPS in (14) with unknown matrices 𝐴, 𝐵, and its data-based
representation 𝑥+ = X𝑑

1
𝑄 (𝑥)𝑥 . Suppose there exists a polynomial

matrix 𝐻 (𝑥) ∈ R𝑇×𝑛 such that the following constrains are satisfied:

N𝑑
0
𝐻 (𝑥) = Θ(𝑥)𝑃−1, with 𝑃 ≻ 0, (19a)[

𝑃−1 X𝑑
1
𝐻 (𝑥)

𝐻 (𝑥)⊤X𝑑⊤
1

𝑃−1

]
≻ 0. (19b)

ThenV(𝑥) = 𝑥⊤ [Θ†N𝑑
0
𝐻 (𝑥)]−1𝑥 is a CLF and𝑢 = U𝑑

0
𝐻 (𝑥) [Θ†N𝑑

0

𝐻 (𝑥)]−1𝑥 is its corresponding stability controller for the unknown
dt-NPS, with Θ† being the left pseudoinverse of Θ.

The pseudocode for constructing the CLF and its stability con-

trollers for dt-NPS is outlined in Algorithm 6.

4.2 Safety and Stability of dt-LS
We consider discrete-time linear systems (dt-LS), defined as

Σ𝑑 : 𝑥+ = 𝐴𝑥 + 𝐵𝑢, (20)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are both unknown.
Similar to Lemma 3.6 under condition (10) and full row-rank

assumption of X𝑑
0
, it can be shown that the closed-loop system

𝑥+ = 𝐴𝑥 + 𝐵𝑢 has the following data-based representation [11,

Theorem 2]:

𝑥+ = X𝑑
1
𝑄𝑥, equivalently, 𝐴 + 𝐵𝐾 = X𝑑

1
𝑄. (21)

The following theorem, adapted from [11, Theorem 2], utilizes

the data-driven representation of dt-LS to design a CBC B(𝑥) =
𝑥⊤𝑃𝑥 , with 𝑃 ≻ 0, and its safety controller 𝑢 = U𝑑

0
𝑄𝑥 based on the

collected data.

Theorem 4.5 (Data-Driven CBC for dt-LS [11]). Consider
the dt-LS in (20) with unknown matrices 𝐴, 𝐵, and its data-based
representation 𝑥+ = X𝑑

1
𝑄𝑥 . Let 𝑋𝐼 , 𝑋𝑂 ⊂ 𝑋 represent the initial and

unsafe regions of dt-LS, respectively. Suppose there exist constants

3
To satisfy conditions (18a) and (18d), we define 𝑍 = 𝑃−1

and enforce that it is a

symmetric positive-definite matrix, i.e., 𝑍 ≻ 0. Once conditions (18a),(18d) are met and

𝑍 is designed, the matrix 𝑃 is computed as the inverse of 𝑍 , i.e., 𝑃 = 𝑍 −1
.

Algorithm 6 Data-driven design of CLF and stability controllers

for dt-NPS

Require: collected trajectoriesU𝑑
0
,X𝑑

0
,X𝑑

1
, a choice of monomials

M(𝑥)
1: Check that the full row-rank condition for N𝑑

0
is satisfied

2: Provide Θ(𝑥) or select the autofill option to let TRUST solve it

based on (16)

3: Solve (19a) and (19b) for 𝑃 and 𝐻 (𝑥), simultaneously

Ensure: CLFV(𝑥) = 𝑥⊤ [Θ†N𝑑
0
𝐻 (𝑥)]−1𝑥 and its corresponding

stability controller 𝑢 = U𝑑
0
𝐻 (𝑥) [Θ†N𝑑

0
𝐻 (𝑥)]−1𝑥

𝛾, 𝜆 ∈ R+, with 𝜆 > 𝛾 , and amatrix𝐻 ∈ R𝑇×𝑛 such that the following
constraints are fulfilled:

X𝑑
0
𝐻 = 𝑃−1, with 𝑃 ≻ 0, (22a)

𝑥⊤ [X𝑑
0
𝐻]−1𝑥 ≤ 𝛾, ∀𝑥 ∈ 𝑋𝐼 , (22b)

𝑥⊤ [X𝑑
0
𝐻]−1𝑥 ≥ 𝜆, ∀𝑥 ∈ 𝑋𝑂 , (22c)[

𝑃−1 X𝑑
1
𝐻

𝐻⊤X𝑑⊤
1

𝑃−1

]
≥ 0. (22d)

Then B(𝑥) = 𝑥⊤ [X𝑑
0
𝐻]−1𝑥 is a CBC and 𝑢 = U𝑑

0
𝐻 [X𝑑

0
𝐻]−1𝑥 is its

corresponding safety controller for the unknown dt-LS.

The linear matrix (in)equalities in (22a), (22d) can be solved using

SDP solvers such as SeDuMi [44], while conditions (22b), (22c) can
be solved using SOSTOOLS [45]. The pseudocode for designing a

CBC and its safety controller for dt-LS is provided in Algorithm 7.

The following theorem, borrowed from [11, Theorem 2], provides

the required conditions for designing a CLFV(𝑥) = 𝑥⊤𝑃𝑥 , with 𝑃 ≻
0, along with a stability controller 𝑢 = U𝑑

0
𝑄𝑥 based on collected

data.

Theorem 4.6 (Data-Driven CLF for dt-LS [11]). Consider the
dt-LS in (20) with unknown matrices 𝐴, 𝐵, and its data-based repre-
sentation 𝑥+ = X𝑑

1
𝑄𝑥 . Suppose there exists a matrix 𝐻 ∈ R𝑇×𝑛 such

that the following constrains are satisfied:

X𝑑
0
𝐻 = 𝑃−1, with 𝑃 ≻ 0, (23a)[

𝑃−1 X𝑑
1
𝐻

𝐻⊤X𝑑⊤
1

𝑃−1

]
≥ 0. (23b)

ThenV(𝑥) = 𝑥⊤ [X𝑑
0
𝐻]−1𝑥 is a CLF and 𝑢 = U𝑑

0
𝐻 [X𝑑

0
𝐻]−1𝑥 is its

corresponding stability controller for the unknown dt-LS.

The pseudocode for designing a CLF and its stability controller

for dt-LS is provided in Algorithm 8.

TRUST Implementation for dt-LS. For the dt-LS, inputs <8>
and <9> in Figure 1 are hidden, as they are not required.

5 Benchmarks and Evaluations
We demonstrate the effectiveness of TRUST through a series of

physical benchmarks, covering the four classes of dynamical sys-

tems and showcasing their respective stability or safety properties.

The mathematical models for all case studies are provided in the

Appendix. However, we assume these models are unknown, relying

solely on the trajectories collected from them for analysis. Table 1

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

Algorithm 7 Data-driven design of CBC and safety controller for

dt-LS
Require: Regions of interest 𝑋,𝑋𝐼 , 𝑋𝑂 , collected trajectories

U𝑑
0
,X𝑑

0
,X𝑑

1

1: Check that the full row-rank condition for X𝑑
0
is satisfied

2: Solve (22a) and (22d) for 𝑃 and 𝐻 , simultaneously

3: Given the constructed 𝐻 , solve (22b) and (22c) via SOS opti-

mization to design 𝛾 and 𝜆, where 𝜆 > 𝛾

Ensure: CBC B(𝑥) = 𝑥⊤ [X𝑑
0
𝐻]−1𝑥 and its corresponding safety

controller 𝑢 = U𝑑
0
𝐻 [X𝑑

0
𝐻]−1𝑥

presents the results for the construction of CBC and safety con-

trollers, while Table 2 shows the results for the design of CLF and

stability controllers.

Details of the simulations, including the number of collected

samples, computation time, and memory usage, are reported in

both tables. As observed, solving linear cases is very fast (under

a second for 2-dimensional cases) due to the use of semidefinite
programs for satisfying the required conditions (apart from design-

ing level sets for CBC if the property is safety-related). Nonlinear

cases, however, require more computation time, as expected, due

to solving SOS programs and designing Lagrange multipliers in

addition to CBC and CLF. For high-dimensional linear cases (4,

6, and 8 dimensions), solving the stability problem is pretty fast

using semidefinite programs. However, the safety problem takes

longer due to the need to design level sets for the CBC using an SOS

optimization program. Simulation results for different case studies,

illustrating the design of CBCs and CLFs, are presented in Figures 2

and 3, respectively. Another observation is that, although both ct-

NPS models—the Lotka-Volterra Predator-Prey Model and the Van

der Pol Oscillator—have a dimension of two, the computational

time and memory usage for the latter are greater due to having

higher-degree monomial terms. A future update to TRUST could

include optimizing certain SOS algorithms to speed up the tool for

solving nonlinear cases with potentially higher-order monomials.

Additionally, whilst the tool is currently designed for scenarios

without noise, future iterations of the tool will increase the scope

to handle noisy data.

6 Conclusion
We developed an open-source software tool, TRUST, for data-driven
controller synthesis of dynamical systems with unknownmathemati-

cal models, to guarantee stability or safety properties. Using only a

single input-state trajectory from the unknown system and by meet-

ing a rank condition for persistent excitation, TRUST is designed to

construct either control Lyapunov functions or control barrier certifi-
cates, along with corresponding stability or safety controllers. The

tool employs SOS optimization programs based solely on data to en-

force these properties across four system classes: (i) continuous-time
nonlinear polynomial systems, (ii) continuous-time linear systems,
(iii) discrete-time nonlinear polynomial systems, and (iv) discrete-time
linear systems. We applied TRUST to a set of physical benchmarks

with unknown dynamics, ensuring their stability or safety proper-

ties within the supported model classes. Future directions involve

Algorithm 8 Data-driven design of CLF and stability controller for

dt-LS

Require: Collected trajectories U𝑑
0
,X𝑑

0
,X𝑑

1

1: Check that the full row-rank condition for X𝑑
0
is satisfied

2: Solve (23a) and (23b) for 𝑃 and 𝐻 , simultaneously

Ensure: CLFV(𝑥) = 𝑥⊤ [X𝑑
0
𝐻]−1𝑥 and its corresponding stabil-

ity controller 𝑢 = U𝑑
0
𝐻 [X𝑑

0
𝐻]−1𝑥

extending TRUST to support a wider range of nonlinear systems and
to accommodate unknown systems with stochastic dynamics.

7 Acknowledgment
The authors would like to thank the MOSEK Team for their support,

which allowed the use of the academic MOSEK license as part of the

web application for our tool. Additionally, the authors are grateful

to Chenyang Yuan for his assistance with the SOS toolbox [46].

Ben Wooding is supported by an EPSRC Doctoral Prize Research

Fellowship.

References
[1] J. McGregor, D. Gluch, and P. Feiler, “Analysis and design of safety-critical, cyber-

physical systems,” ACM SIGAda Ada Letters, vol. 36, no. 2, pp. 31–38, 2017.
[2] Z.-S. Hou and Z.Wang, “Frommodel-based control to data-driven control: Survey,

classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013.
[3] F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect data-driven

control formulations via regularizations and relaxations,” IEEE Transactions on
Automatic Control, vol. 68, no. 2, pp. 883–897, 2022.

[4] H. Khalil, “Nonlinear systems,” 2002.

[5] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using barrier

certificates,” in Hybrid Systems: Computation and Control. Springer Berlin

Heidelberg, 2004, pp. 477–492.

[6] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada,

“Control Barrier Functions: Theory and Applications,” in 2019 18th European
Control Conference (ECC). IEEE, 2019, pp. 3420–3431.

[7] W. Xiao, C. G. Cassandras, and C. Belta, Safe Autonomy with Control Barrier
Functions: Theory and Applications. Springer, 2023.

[8] G. C. Calafiore andM. C. Campi, “The scenario approach to robust control design,”

IEEE Transactions on automatic control, vol. 51, no. 5, pp. 742–753, 2006.
[9] M. C. Campi, S. Garatti, and M. Prandini, “The scenario approach for systems

and control design,” Annual Reviews in Control, vol. 33, no. 2, pp. 149–157, 2009.
[10] P. Mohajerin Esfahani, T. Sutter, and J. Lygeros, “Performance bounds for the

scenario approach and an extension to a class of non-convex programs,” IEEE
Transactions on Automatic Control, vol. 60, no. 1, pp. 46–58, 2014.

[11] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabilization, opti-

mality, and robustness,” IEEE Transactions on Automatic Control, vol. 65, no. 3, pp.
909–924, 2019.

[12] J. C.Willems, P. Rapisarda, I. Markovsky, and B. L. DeMoor, “A note on persistency

of excitation,” Systems & Control Letters, vol. 54, no. 4, pp. 325–329, 2005.
[13] J. Kenanian, A. Balkan, R. M. Jungers, and P. Tabuada, “Data driven stability

analysis of black-box switched linear systems,” Automatica, vol. 109, 2019.
[14] N. Boffi, S. Tu, N. Matni, J. J. Slotine, and V. Sindhwani, “Learning stability

certificates from data,” in Proceedings of Conference on Robot Learning, 2021, pp.
1341–1350.

[15] A. Lavaei, P. M. Esfahani, and M. Zamani, “Data-driven stability verification of

homogeneous nonlinear systems with unknown dynamics,” in 61st Conference on
Decision and Control (CDC), 2022, pp. 7296–7301.

[16] A. Lavaei and D. Angeli, “Data-driven stability certificate of interconnected

homogeneous networks via ISS properties,” IEEE Control Systems Letters, vol. 7,
pp. 2395–2400, 2023.

[17] A. Nejati, A. Lavaei, P. Jagtap, S. Soudjani, and M. Zamani, “Formal verification

of unknown discrete- and continuous-time systems: A data-driven approach,”

IEEE Transactions on Automatic Control, vol. 68, no. 5, pp. 3011–3024, 2023.
[18] L. Lindemann, H. Hu, A. Robey, H. Zhang, D. Dimarogonas, S. Tu, and N. Matni,

“Learning hybrid control barrier functions from data,” in Conference on robot
learning, 2021, pp. 1351–1370.

[19] A. Nejati and M. Zamani, “Data-driven synthesis of safety controllers via multiple

control barrier certificates,” IEEE Control Systems Letters, vol. 7, pp. 2497–2502,
2023.

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

Table 1: Data-driven design of CBCs and safety controllers. The symbol 𝑛 denotes the dimension, while𝑇 represents the number
of collected samples. All cases were run on a MacBook Pro (Apple M3 Max with 36 GB RAM).

Experiment Name System 𝑛 𝑇 𝛾 𝜆 Time (s) Memory (MB)
Lotka-Volterra Predator-Prey Model ct-NPS 2 12 0.11 0.14 50.92 45.0

Van der Pol Oscillator ct-NPS 2 15 5.73 14.26 345.79 105.5

DC Motor ct-LS 2 15 3.11 3.43 0.53 1.2

Room Temperature System 1 ct-LS 2 15 631.02 1838.62 0.34 0.8

Two Tank System ct-LS 2 12 5.48 6.17 0.35 10.3

High Order 4 ct-LS 4 16 13,910.89 14,374.75 5.98 6.2

High Order 6 ct-LS 6 16 20,072.83 20,600.83 91.06 17.0

High Order 8 ct-LS 8 20 47,437.80 66,261.32 1008.80 44.0

Lotka-Volterra Predator Prey dt-NPS 2 12 0.46 0.57 59.86 58.3

Lorenz Attractor dt-NPS 3 12 1,052.68 3,931.40 948.52 323.7

DC Motor dt-LS 2 15 0.64 0.70 0.61 1.4

Room Temperature System 1 dt-LS 2 15 8.87 9.07 0.77 1.8

Room Temperature System 2 dt-LS 3 15 8.02 12.00 2.58 9.5

Two Tank System dt-LS 2 8 1.80 3.17 1.05 2.3

High Order 4 dt-LS 4 16 261.63 264.94 5.59 5.6

High Order 6 dt-LS 6 16 22.50 23.14 85.01 16.0

High Order 8 dt-LS 8 20 21.93 30.46 1003.39 48.5

Table 2: Data-driven design of CLFs and stability controllers. The symbol 𝑛 denotes the dimension, while 𝑇 represents the
number of collected samples. All cases were run on a MacBook Pro (Apple M3 Max with 36 GB RAM).

Experiment Name System 𝑛 𝑇 Time (s) Memory (MB)
Lotka-Volterra Predator-Prey Model ct-NPS 2 12 49.76 33.8

Van der Pol Oscillator ct-NPS 2 15 347.67 139.7

DC Motor ct-LS 2 15 0.02 0.1

Room Temperature System 1 ct-LS 2 15 0.05 0.1

Two Tank System ct-LS 2 12 0.06 0.1

High Order 4 ct-LS 4 16 0.10 0.2

High Order 6 ct-LS 6 16 0.17 0.4

High Order 8 ct-LS 8 16 0.35 0.8

Academic System dt-NPS 2 12 44.72 43.9

Lorenz Attractor dt-NPS 3 12 720.81 251

DC Motor dt-LS 2 15 0.06 0.2

Room Temperature System 1 dt-LS 2 15 0.05 0.1

Room Temperature System 2 dt-LS 3 15 0.08 0.2

Two Tank System dt-LS 2 8 0.06 0.1

High Order 4 dt-LS 4 16 0.15 0.3

High Order 6 dt-LS 6 16 0.29 0.6

High Order 8 dt-LS 8 16 0.49 1.2

[20] A. Aminzadeh, M. Ashoori, A. Nejati, and A. Lavaei, “A physics-informed sce-

nario approach with data mitigation for safety verification of nonlinear systems,”

arXiv:2412.03932, 2024.
[21] M. Kazemi, R. Majumdar, M. Salamati, S. Soudjani, and B. Wooding, “Data-driven

abstraction-based control synthesis,” Nonlinear Analysis: Hybrid Systems, vol. 52,
p. 101467, 2024.

[22] A.Makdesi, A. Girard, and L. Fribourg, “Data-drivenmodels ofmonotone systems,”

IEEE Transactions on Automatic Control, 2023.
[23] A. Devonport, A. Saoud, and M. Arcak, “Symbolic abstractions from data: A pac

learning approach,” in 2021 60th IEEE Conference on Decision and Control (CDC),
2021, pp. 599–604.

[24] R. Coppola, A. Peruffo, and M. Mazo, “Data-driven abstractions for verification

of deterministic systems,” arXiv:2211.01793, 2022.
[25] D. Ajeleye, A. Lavaei, and M. Zamani, “Data-driven controller synthesis via finite

abstractions with formal guarantees,” IEEE Control Systems Letters, vol. 7, pp.
3453–3458, 2023.

[26] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven model pre-

dictive control with stability and robustness guarantees,” IEEE Transactions on
Automatic Control, vol. 66, no. 4, pp. 1702–1717, 2020.

[27] X. Dai, C. De Persis, and N. Monshizadeh, “Data-driven optimal output feedback

control of linear systems from input-output data,” IFAC-PapersOnLine, vol. 56,
no. 2, pp. 1376–1381, 2023.

[28] A. Luppi, A. Bisoffi, C. De Persis, and P. Tesi, “Data-driven design of safe control

for polynomial systems,” European Journal of Control, vol. 75.
[29] M. Zaker, D. Angeli, and A. Lavaei, “Certified learning of incremental iss con-

trollers for unknown nonlinear polynomial dynamics,” arXiv:2412.03901, 2024.
[30] A. Nejati, B. Zhong, M. Caccamo, and M. Zamani, “Data-driven controller syn-

thesis of unknown nonlinear polynomial systems via control barrier certificates,”

in Learning for Dynamics and Control Conference, 2022, pp. 763–776.
[31] B. Samari, O. Akbarzadeh, M. Zaker, and A. Lavaei, “From a single trajectory to

safety controller synthesis of discrete-time nonlinear polynomial systems,” vol. 8,

pp. 3123–3128, 2024.

[32] B. Wooding and A. Lavaei, “Learning k-inductive control barrier certificates for

unknown nonlinear dynamics beyond polynomials,” arXiv:2412.07232, 2024.
[33] J. Björnsson, S. Gudmundsson, and S. Hafstein, “Class library in C++ to compute

lyapunov functions for nonlinear systems,” IFAC-PapersOnLine, vol. 48, no. 11,
pp. 778–783, 2015.

[34] J. Liu, Y. Meng, M. Fitzsimmons, and R. Zhou, “TOOL LyZNet: A lightweight

python tool for learning and verifying neural lyapunov functions and regions

of attraction,” in Proceedings of the 27th ACM International Conference on Hybrid
Systems: Computation and Control, 2024, pp. 1–8.

[35] A. Edwards, A. Peruffo, and A. Abate, “Fossil 2.0: Formal certificate synthesis for

the verification and control of dynamical models,” in Proceedings of the 27th ACM
International Conference on Hybrid Systems: Computation and Control, 2024, pp.

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

1–10.

[36] B. Wooding, V. Horbanov, and A. Lavaei, “PRoTECT: Parallelized construction

of safety barrier certificates for nonlinear polynomial systems,” arXiv preprint
arXiv:2404.14804, 2024.

[37] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOSTOOLS: A

general purpose sum of squares programming solver,” in Proceedings of the 41st
IEEE Conference on Decision and Control, 2002., vol. 1, 2002, pp. 741–746.

[38] J. Bucanek, “Model-view-controller pattern,” Learn Objective-C for Java Developers,
pp. 353–402, 2009.

[39] K. Beck, Test driven development: By example. Addison-Wesley Professional,

2022.

[40] C. De Persis, M. Rotulo, and P. Tesi, “Learning controllers from data via approxi-

mate nonlinearity cancellation,” IEEE Transactions on Automatic Control, vol. 68,
no. 10, pp. 6082–6097, 2023.

[41] M. Guo, C. De Persis, and P. Tesi, “Learning control for polynomial systems using

sum of squares relaxations,” in 2020 59th IEEE conference on decision and control
(CDC), 2020, pp. 2436–2441.

[42] J. Bochnak, M. Coste, and M.-F. Roy, Real algebraic geometry. Springer Science

& Business Media, 2013, vol. 36.

[43] H. Wang, K. Margellos, A. Papachristodoulou, and C. De Persis, “Convex co-

design of control barrier functions and feedback controllers for linear systems,”

2024.

[44] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-

metric cones,” Optimization methods and software, vol. 11, no. 1-4, pp. 625–653,
1999.

[45] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, “SOSTOOLS: Con-

trol applications and new developments,” in Proceedings of IEEE International
Conference on Robotics and Automation, 2004, pp. 315–320.

[46] C. Yuan, “SumOfSquares.py.” [Online]. Available: https://github.com/

yuanchenyang/SumOfSquares.py

[47] P. J. Wangersky, “Lotka-volterra population models,” Annual Review of Ecology
and Systematics, vol. 9, pp. 189–218, 1978.

[48] A. Abate, H. Blom, N. Cauchi, J. Delicaris, A. Hartmanns, M. Khaled, A. Lavaei,

C. Pilch, A. Remke, S. Schupp, F. Shmarov, S. Soudjani, A. Vinod, B. Wooding,

M. Zamani, and P. Zuliani, “ARCH-COMP20 Category Report: Stochastic Models,”

2020.

[49] P. A. Adewuyi, “Dc motor speed control: A case between pid controller and fuzzy

logic controller,” international journal of multidisciplinary sciences and engineering,
vol. 4, no. 4, pp. 36–40, 2013.

[50] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, “FOSSIL: a software

tool for the formal synthesis of lyapunov functions and barrier certificates using

neural networks,” in Proceedings of the 24th International Conference on Hybrid
Systems: Computation and Control, 2021, pp. 1–11.

[51] J. A. Ramos and P. L. Dos Santos, “Mathematical modeling, system identification,

and controller design of a two tank system,” in 2007 46th IEEE Conference on
Decision and Control. IEEE, 2007, pp. 2838–2843.

8 Appendix
The mathematical models for each case study are provided below.

Note that these models are assumed to be unknown, and our analy-

sis relies solely on the trajectories collected from them.

ct-NPS: Lotka-Volterra Predator-PreyModel.The Lotka-Volterra
equations are to describe the dynamics of biological systems in

which two species interact [47]. The state variable 𝑥1 represents

the population density of the prey and 𝑥2 the population density of

the predator:

Σ𝑐 :

{
¤𝑥1 (𝑡) = 𝛼𝑥1 (𝑡) − 𝛽𝑥1 (𝑡)𝑥2 (𝑡) − 𝑢1 (𝑡),
¤𝑥2 (𝑡) = −𝜂𝑥2 (𝑡) + 𝛿𝑥1 (𝑡)𝑥2 (𝑡) + 𝑢2 (𝑡),

which is of the form (3) with

𝐴 =

[
𝛼 0 −𝛽
0 −𝜂 𝛿

]
, 𝐵 =

[
−1 0

0 1

]
, M(𝑥) =


𝑥1 (𝑡)
𝑥2 (𝑡)

𝑥1 (𝑡)𝑥2 (𝑡)

,
where 𝛼 = 𝜂 = 0.6 are the prey growth and predator death rates,

while 𝛽 = 𝛿 = 1 are the effect of the presence of the predator

and prey on each other. The inputs above represent a pest control

scenario where either pesticides or the introduction of predators

is used to manage the prey population. For safety problems, the

regions of interest are given as follows: state space 𝑋 = [−2, 2] ×
[−1, 1], initial set 𝑋𝐼 = [0.5, 1] × [0.2, 0.4] and unsafe sets 𝑋𝑂 =

[−2,−1.5] × [0.8, 1] ∪ [−2,−1.5] × [−1,−0.8] ∪ [1.6, 2] × [0.85, 1] ∪
[1.6, 2] × [−1,−0.8].
ct-NPS: Van der Pol Oscillator. We consider the Van der Pol

oscillator benchmark from the ARCH competition [48], with the

following dynamics:

Σ𝑐 :

{
¤𝑥1 (𝑡) = 𝑥2 (𝑡),
¤𝑥2 (𝑡) = −𝑥1 (𝑡) + (1 − 𝑥1 (𝑡)2)𝑥2 (𝑡) + 𝑢 (𝑡),

which is of the form (3) with

𝐴 =

[
0 1 0

−1 1 −1

]
, 𝐵 =

[
0 1

]⊤
, M(𝑥) =


𝑥1 (𝑡)
𝑥2 (𝑡)

𝑥2
1
(𝑡)𝑥2 (𝑡)

 .
For safety problems, we consider 𝑋 = [−2, 2]2, 𝑋𝐼 = [−0.2, 0.2]2
and 𝑋𝑂 = [−2,−1.5]2 ∪ [1.5, 2]2.
ct-LS: DC Motor. We consider a DC Motor, based on [49], with

the dynamics

Σ𝑐 :

{
¤𝑥1 = −(𝑅

𝐿
𝑥1 + 𝑘𝑑𝑐

𝐿
𝑥2 + 𝑢1),

¤𝑥2 = 𝑘𝑑𝑐
𝐽
𝑥1 − 𝑏

𝐽
𝑥2 + 𝑢2,

(24)

which is of the form (9) with

𝐴 =

[
−𝑅
𝐿

−𝑘𝑑𝑐
𝐿

𝑘𝑑𝑐
𝐽

−𝑏
𝐽

]
, 𝐵 =

[
1 0

0 1

]
,

where 𝑥1, 𝑥2, 𝑅 = 1, 𝐿 = 0.01, 𝐽 = 0.01 are the armature current, the

rotational speed of the shaft, the electrical resistance, the electrical

inductance, and the moment of inertia of the rotor, respectively. In

addition, 𝑏 = 1, and 𝑘𝑑𝑐 = 0.01, represent, respectively, the motor

torque, and the back electromotive force. For safety problems, the

state space is given as 𝑋 = [−1, 1]2, with initial set 𝑋𝐼 = [0.1, 0.4] ×
[0.1, 0.55] and four unsafe sets𝑋𝑂 = [0.5, 1] × [0.6, 1] ∪ [−1,−0.6] ×
[0.6, 1] ∪ [−1,−0.7] × [−1,−0.6] ∪ [0.6, 1] × [−1,−0.6].
ct-LS: Room Temperature System 1. We consider the two-room

system [50], with dynamics

Σ𝑐 :

{
¤𝑥1 = −(𝛼 + 𝛼𝑒1)𝑥1 + 𝛼𝑥2 + 𝛼𝑒1𝑢,
¤𝑥2 = −(𝛼 + 𝛼𝑒2)𝑥2 + 𝛼𝑥1 + 𝛼𝑒2𝑢,

(25)

which is of the form (9) with

𝐴 =

[
−(𝛼 + 𝛼𝑒1) 𝛼

𝛼 −(𝛼 + 𝛼𝑒2)

]
, 𝐵 =

[
𝛼𝑒1
𝛼𝑒2

]
,

where heat exchange constants are 𝛼 = 5 × 10
−2, 𝛼𝑒1 = 5 ×

10
−3, 𝛼𝑒2 = 8 × 10

−3
. For safety problems, the state space is pro-

vided as 𝑋 = [−2, 3]2, with the initial set 𝑋𝐼 = [−0.5, 0.5]2 and two

unsafe sets 𝑋𝑂 = [−2,−1] × [2, 3] ∪ [2, 3] × [−2,−1].
ct-LS: Two Tank System. Consider a two-tank system [51], char-

acterized by differential equations

Σ𝑐 :

{
¤𝑥1 = −𝛼1

𝑎1
𝑥1 + 𝑢1

𝑎1
,

¤𝑥2 = 𝛼1

𝑎2
𝑥1 − 𝛼2

𝑎2
𝑥2 + 𝑢2

𝑎2
,

(26)

which is of the form (9) with

𝐴 =

[−𝛼1

𝑎1
0

𝛼1

𝑎2
−𝛼2

𝑎2

]
, 𝐵 =

[
1

𝑎1
0

0
1

𝑎2

]
,

https://github.com/yuanchenyang/SumOfSquares.py
https://github.com/yuanchenyang/SumOfSquares.py

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

where 𝑥1, 𝑥2 are heights of the fluid in two tanks. Additionally, 𝛼𝑖
and 𝑎𝑖 are the valve coefficient and area of the tank 𝑖 , and 𝑢1 and

𝑢2 are the inflow and outflow rate of tank 1 and 2, respectively.

Furthermore, 𝛼1 = 𝛼2 = 𝑎1 = 𝑎2 = 2. For safety problems, we

consider the state space 𝑋 = [−3, 3]2, initial set 𝑋𝐼 = [−1, 1]2 and
two unsafe sets 𝑋𝑂 = [1.5, 3]2 ∪ [−3,−1.5]2.
ct-LS: 4DAcademic Example.We consider the following 4-dimensional

benchmark adapted from [50]

Σ𝑐 :


¤𝑥1 (𝑡) = 𝑥2 (𝑡),
¤𝑥2 (𝑡) = 𝑥3 (𝑡),
¤𝑥3 (𝑡) = 𝑥4 (𝑡),
¤𝑥4 (𝑡) = −3980𝑥4 (𝑡) − 4180𝑥3 (𝑡) − 2400𝑥2 (𝑡) − 576𝑥1 (𝑡) + 𝑢 (𝑡),

which is of the form (9) with

𝐴 =


0 1 0 0

0 0 1 0

0 0 0 1

−576 −2400 −4180 −3980

,
𝐵 =

[
0 0 0 0 0 1

]⊤
,

with the state space 𝑋 = [−2, 2]4, initial region 𝑋𝐼 = [0.5, 1.5]4,
and unsafe region 𝑋𝑂 = [−2.4,−1.6]4 for safety problems.

ct-LS: 6DAcademic Example.We consider the following 6-dimensional

benchmark adapted from [50]

Σ𝑐 :



¤𝑥1 (𝑡) = 𝑥2 (𝑡),
¤𝑥2 (𝑡) = 𝑥3 (𝑡),
¤𝑥3 (𝑡) = 𝑥4 (𝑡),
¤𝑥4 (𝑡) = 𝑥5 (𝑡),
¤𝑥5 (𝑡) = 𝑥6 (𝑡),
¤𝑥6 (𝑡) = −800𝑥6 (𝑡) − 2273𝑥5 (𝑡) − 3980𝑥4 (𝑡) − 4180𝑥3 (𝑡)

−2400𝑥2 (𝑡) − 576𝑥1 (𝑡) + 𝑢 (𝑡),

which is of the form (9) with

𝐴 =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−576 −2400 −4180 −3980 −2273 −800


,

𝐵 =
[
0 0 0 0 0 1

]⊤
,

with the state space 𝑋 = [−2, 2]6, initial region 𝑋𝐼 = [0.5, 1.5]6,
and unsafe region 𝑋𝑂 = [−2,−1.6]6 for safety problems.

ct-LS: 8DAcademic Example.We consider the following 8-dimensional

benchmark adapted from [50]

Σ𝑐 :



¤𝑥1 (𝑡) = 𝑥2 (𝑡),
¤𝑥2 (𝑡) = 𝑥3 (𝑡),
¤𝑥3 (𝑡) = 𝑥4 (𝑡),
¤𝑥4 (𝑡) = 𝑥5 (𝑡),
¤𝑥5 (𝑡) = 𝑥6 (𝑡),
¤𝑥6 (𝑡) = 𝑥7 (𝑡),
¤𝑥7 (𝑡) = 𝑥8 (𝑡),
¤𝑥8 (𝑡) = −20𝑥8 (𝑡) − 170𝑥7 (𝑡) − 800𝑥6 (𝑡) − 2273𝑥5 (𝑡)

−3980𝑥4 (𝑡) − 4180𝑥3 (𝑡) − 2400𝑥2 (𝑡) − 576𝑥1 (𝑡) + 𝑢 (𝑡),

which is of the form (9) with

𝐴=



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−576 −2400 −4180 −3980 −2273 −800 −170 −20


,

𝐵 =
[
0 0 0 0 0 0 0 1

]⊤
,

with the state space 𝑋 = [−2.2, 2.2]8, initial region 𝑋𝐼 = [0.9, 1.1]8,
and unsafe region 𝑋𝑂 = [−2.2,−1.8]8 for safety problems.

dt-NPS: Lotka-Volterra Predator-Prey Model. We consider the

Lotka-Volterra Predator-Prey Model [47], with dynamics

Σ𝑑 :

{
𝑥+
1
= 𝑥1 + 𝜏 (𝛼𝑥1 − 𝛽𝑥1𝑥2 − 𝑢1),

𝑥+
2
= 𝑥2 + 𝜏 (−𝜂𝑥2 + 𝛿𝑥1𝑥2 + 𝑢2),

which is of the form (14) with

𝐴 =

[
1 + 𝜏𝛼 0 −𝜏𝛽

0 1 − 𝜏𝜂 𝜏𝛿

]
, 𝐵 =

[
−𝜏
𝜏

]
, M(𝑥) =


𝑥1
𝑥2
𝑥1𝑥2

,
where 𝜏 = 0.01, 𝛼 = 0.6, 𝛽 = 1.0, 𝜂 = 0.6, 𝛿 = 1.0. For safety

problems, we consider𝑋 = [−2, 2]×[−1, 1],𝑋𝐼 = [0.5, 1]×[0.2, 0.4],
and 𝑋𝑂 = [−2,−1.5] × [0.8, 1] ∪ [−2,−1.5] × [−1,−0.8] ∪ [1.6, 2] ×
[0.85, 1] ∪ [1.6, 2] × [−1,−0.8].
dt-NPS: Academic System. We focus on the following nonlinear

polynomial system borrowed from [41]:

Σ𝑑 :

{
𝑥+
1
= 𝑥1 + 𝜏𝑥2,

𝑥+
2
= 𝑥2 + 𝜏 (𝑥2

1
+ 𝑢),

which is of the form of (14), with

𝐴 =

[
1 0

0 1

]
, 𝐵 =

[
0

1

]
, M(𝑥) =

[
𝑥2
𝑥2
1

]
.

with 𝜏 = 0.1. Note that this case study serves solely for stability;

therefore, no regions of interest for safety are provided.

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

dt-NPS: LorenzAttractor.We consider the Lorenz attractor, a well-

studied dynamical system with chaotic behavior, with dynamics

Σ𝑑 :


𝑥+
1
= 𝑥1 + 𝜏 (𝜎𝑥1 + 𝜎𝑥2 + 𝑢1),

𝑥+
2
= 𝑥2+𝜏 (𝜌𝑥1−𝑥2−𝑥1𝑥3+𝑢2),

𝑥+
3
= 𝑥3 + 𝜏 (𝑥1𝑥2 − 𝛽𝑥3 + 𝑢3),

which is of the form (14) with

𝐴 =


1 + 𝜏𝜎 𝜏𝜎 0 0 0 0

𝜏𝜌 1 − 𝜏 0 −𝜏 0 0

0 0 1 − 𝜏𝛽 𝜏 0 0

,

𝐵 =


𝜏

𝜏

𝜏

, M(𝑥) =



𝑥1
𝑥2
𝑥3
𝑥1𝑥2
𝑥2𝑥3
𝑥1𝑥3


,

where 𝜌 = 28, 𝜎 = 10, 𝛽 = 8

3
, 𝜏 = 10

−3
. For safety problems, the

regions of interest are given as: state space 𝑋 = [−5, 5]3, initial set
𝑋𝐼 = [−1, 1]3 and two unsafe sets 𝑋𝑂 = [−5,−3.5]3 ∪ [3.5, 5]3.
dt-LS: DC Motor. We consider a DC Motor, based on [49], with

the dynamics

Σ𝑑 :

{
𝑥+
1
= 𝑥1 − 𝜏 (𝑅𝐿 𝑥1 +

𝑘𝑑𝑐
𝐿
𝑥2 + 𝑢1),

𝑥+
2
= 𝑥2 + 𝜏 (𝑘𝑑𝑐𝐽 𝑥1 −

𝑏
𝐽
𝑥2 + 𝑢2),

which is of the form (20) with

𝐴 =

[
1 − 𝜏𝑅

𝐿
−𝜏𝑘𝑑𝑐

𝐿
𝜏𝑘𝑑𝑐
𝐽

1 − 𝜏𝑏
𝐽

]
, 𝐵 =

[
1 0

0 1

]
,

where 𝜏 = 0.01 is the sampling time, and other parameters are as

in (24). For safety problems, the state space is given as 𝑋 = [−1, 1]2,
with initial set 𝑋𝐼 = [0.1, 0.4] × [0.1, 0.55] and two unsafe sets

𝑋𝑂 = [0.45, 1] × [0.6, 1] ∪ [−1,−0.6] × [0.6, 1].
dt-LS: Room Temperature System 1.We consider the two-room

system [50], with dynamics

Σ𝑑 :

{
𝑥+
1
= (1 − 𝜏 (𝛼 + 𝛼𝑒1))𝑥1 + 𝜏𝛼𝑥2 + 𝜏𝛼𝑒1𝑢,

𝑥+
2
= (1 − 𝜏 (𝛼 + 𝛼𝑒2))𝑥2 + 𝜏𝛼𝑥1 + 𝜏𝛼𝑒2𝑢,

which is of the form (20) with

𝐴 =

[
1 − 𝜏 (𝛼 + 𝛼𝑒1) 𝜏𝛼

𝜏𝛼 1 − 𝜏 (𝛼 + 𝛼𝑒2)

]
, 𝐵 =

[
𝜏𝛼𝑒1
𝜏𝛼𝑒2

]
,

where 𝜏 = 5, and other parameters are as in (25). For safety problems,

the regions of interest as given as 𝑋 = [−2, 3]2, 𝑋𝐼 = [−0.5, 0.5]2,
and 𝑋𝑂 = [2, 3]2 ∪ [−2,−0.5] × [1.5, 3] ∪ [1.5, 3] × [−2,−0.5].
dt-LS: RoomTemperature System 2.We consider the three-room

system [50], with dynamics

Σ𝑑 :


𝑥+
1
= (1 − 𝜏 (𝛼 − 𝛼𝑒1))𝑥1 + 𝜏𝛼𝑥3 + 𝜏𝛼𝑒1𝑢,

𝑥+
2
= (1 − 𝜏 (𝛼 − 𝛼𝑒2))𝑥2 + 𝜏𝛼 (𝑥1 + 𝑥3) + 𝜏𝛼𝑒2𝑢,

𝑥+
3
= (1 − 𝜏 (𝛼 − 𝛼𝑒3))𝑥3 + 𝜏𝛼𝑥1 + 𝜏𝛼𝑒3𝑢,

which is of the form (20) with

𝐴 =


1−𝜏 (𝛼−𝛼𝑒1) 0 𝜏𝛼

𝜏𝛼 1−𝜏 (2𝛼−𝛼𝑒2) 𝜏𝛼

𝜏𝛼 0 1−𝜏 (𝛼−𝛼𝑒3)

, 𝐵 =


𝜏𝛼𝑒1
𝜏𝛼𝑒2
𝜏𝛼𝑒3

,
where 𝜏 = 5, and other parameters are as in (25). For safety problems,

the regions of interest are given as: state space 𝑋 = [−2, 3]3, initial
set 𝑋𝐼 = [−0.5, 0.5]3 and two unsafe sets 𝑋𝑂 = [2, 3] × [−2,−3] ×
[2, 3] ∪ [−2,−3] × [2, 3] × [−2,−3]3.
dt-LS: Two Tank System. Consider a two-tank system [51], char-

acterized by difference equations

Σ𝑑 :

{
𝑥+
1
= (1 − 𝜏 𝛼1

𝑎1
)𝑥1 + 𝜏 𝑢1

𝑎1
,

𝑥+
2
= 𝜏

𝛼1

𝑎2
𝑥1 + (1 − 𝜏 𝛼2

𝑎2
)𝑥2 + 𝜏 𝑢2

𝑎2
,

which is of the form (20) with

𝐴 =

[
1 − 𝜏 𝛼1

𝑎1
0

𝜏
𝛼1

𝑎2
1 − 𝜏 𝛼2

𝑎2

]
, 𝐵 =

[
𝜏 1

𝑎1
0

0 𝜏 1

𝑎2

]
,

where 𝜏 = 0.1, and other parameters are as in (26). For safety

problems, the regions of interest are𝑋 = [−2, 2]2,𝑋𝐼 = [−0.5, 0.5]2,
𝑋𝑂 = [1.5, 2]2∪ [−2,−1.5] × [1, 2] ∪ [−1.5,−1] × [1.5, 2] ∪ [1.5, 2] ×
[−2,−1].
dt-LS: 4D Academic Example. We consider the following 4-

dimensional benchmark adapted from [50]

Σ𝑑 :


𝑥+
1
= 𝑥1 + 𝜏 (𝑥2 + 𝑢1),

𝑥+
2
= 𝑥2 + 𝜏 (𝑥3 + 𝑢2),

𝑥+
3
= 𝑥3 + 𝜏 (𝑥4 + 𝑢3),

𝑥+
4
= 𝑥4 + 𝜏 (−3980𝑥4 − 4180𝑥3 − 2400𝑥2 − 576𝑥1 + 𝑢4),

which is of the form (20) with

𝐴 =


1 𝜏 0 0

0 1 𝜏 0

0 0 1 𝜏

−576𝜏 −2400𝜏 −4180𝜏 1 − 3980𝜏

,
𝐵 = 𝜏 I4,

where 𝜏 = 0.001, with the state space 𝑋 = [−2, 2]4, initial region
𝑋𝐼 = [0.5, 1.5]4, and unsafe region 𝑋𝑂 = [−2.4,−1.6]4 for safety
problems.

dt-LS: 6D Academic Example. We consider the following 6-

dimensional benchmark adapted from [50]

Σ𝑑 :



𝑥+
1
= 𝑥1 + 𝜏 (𝑥2 + 𝑢1),

𝑥+
2
= 𝑥2 + 𝜏 (𝑥3 + 𝑢2),

𝑥+
3
= 𝑥3 + 𝜏 (𝑥4 + 𝑢3),

𝑥+
4
= 𝑥4 + 𝜏 (𝑥5 + 𝑢4),

𝑥+
5
= 𝑥5 + 𝜏 (𝑥6 + 𝑢5),

𝑥+
6
= 𝑥6 + 𝜏 (−800𝑥6 − 2273𝑥5 − 3980𝑥4 − 4180𝑥3 − 2400𝑥2

−576𝑥1 + 𝑢6),

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

which is of the form (20) with

𝐴 =



1 𝜏 0 0 0 0

0 1 𝜏 0 0 0

0 0 1 𝜏 0 0

0 0 0 1 𝜏 0

0 0 0 0 1 𝜏

−576𝜏 −2400𝜏 −4180𝜏 −3980𝜏 −2273𝜏 1 − 800𝜏


,

𝐵 = 𝜏 I6,

where 𝜏 = 0.1, with the state space 𝑋 = [−2, 2]6, initial region
𝑋𝐼 = [0.5, 1.5]6, and unsafe region 𝑋𝑂 = [−2,−1.6]6 for safety

problems.

dt-LS: 8D Academic Example. We consider the following 8-

dimensional benchmark adapted from [50]

Σ𝑑 :



𝑥+
1
= 𝑥1 + 𝜏 (𝑥2 + 𝑢1),

𝑥+
2
= 𝑥2 + 𝜏 (𝑥3 + 𝑢2),

𝑥+
3
= 𝑥3 + 𝜏 (𝑥4 + 𝑢3),

𝑥+
4
= 𝑥4 + 𝜏 (𝑥5 + 𝑢4),

𝑥+
5
= 𝑥5 + 𝜏 (𝑥6 + 𝑢5),

𝑥+
6
= 𝑥6 + 𝜏 (𝑥7 + 𝑢6),

𝑥+
7
= 𝑥7 + 𝜏 (𝑥8 + 𝑢7),

𝑥+
8
= 𝑥8 + 𝜏 (−20𝑥8 − 170𝑥7 − 800𝑥6 − 2273𝑥5 − 3980𝑥4 − 4180𝑥3

−2400𝑥2 − 576𝑥1 + 𝑢8),
which is of the form (20) with

𝐴=



1 𝜏 0 0 0 0 0 0

0 1 𝜏 0 0 0 0 0

0 0 1 𝜏 0 0 0 0

0 0 0 1 𝜏 0 0 0

0 0 0 0 1 𝜏 0 0

0 0 0 0 0 1 𝜏 0

0 0 0 0 0 0 1 𝜏

−576𝜏 −2400𝜏 −4180𝜏 −3980𝜏 −2273𝜏 −800𝜏 −170𝜏 1 − 20𝜏


,

𝐵 = 𝜏 I8,

where 𝜏 = 0.1, with the state space 𝑋 = [−2.2, 2.2]8, initial region
𝑋𝐼 = [0.9, 1.1]8, and unsafe region 𝑋𝑂 = [−2.2,−1.8]8 for safety
problems.

TRUST: Controller Synthesis for Unknown Models Using a Single Trajectory

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) ct-LS: DC Motor

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) ct-NPS: Predator-Prey

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) ct-NPS: Van der Pol Oscillator

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(d) ct-LS: Room Temperature 1

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(e) ct-LS: Two Tank (f) dt-NPS: Predator-Prey

(g) dt-LS: DC Motor (h) dt-LS: Room Temperature 1 (i) dt-LS: Two Tank

(j) dt-LS: Room Temperature 2 (k) dt-NPS: Lorenz Attractor

Figure 2: Simulation results for designing CBCs. The purple box represents the initial region, while the red boxes indicate
multiple unsafe regions. For the 2D figures, the blue and red dashed lines show the initial and unsafe level sets, respectively.
For the 3D figures, the purple bubble indicates the initial level set, while the gray bubble represents the unsafe level set.

Jamie Gardner, Ben Wooding, Amy Nejati, and Abolfazl Lavaei

(a) ct-LS: DC Motor (b) ct-NPS: Predator Prey

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
4

-3

-2

-1

0

1

2

3
10

11

(c) ct-NPS: Van der Pol Oscillator

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

4

(d) ct-LS: Room Temperature 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
10

4

(e) ct-LS: Two Tank (f) dt-NPS: Academic System

(g) dt-LS: DC Motor (h) dt-LS: Room Temperature 1 (i) dt-LS: Two Tank

(j) dt-LS: Room Temperature 2 (k) dt-NPS: Lorenz Attractor

Figure 3: Simulation results for designing CLFs.

	Abstract
	1 Introduction
	1.1 Data-Driven Techniques
	1.2 Data-Driven Literature
	1.3 Related Software Tools
	1.4 Central Contributions
	1.5 Notation

	2 Overview of TRUST
	3 Data-Driven Results for Continuous-Time Systems
	3.1 Safety and Stability of ct-NPS
	3.2 Safety and Stability of ct-LS

	4 Data-Driven Results for Discrete-Time Systems
	4.1 Safety and Stability of dt-NPS
	4.2 Safety and Stability of dt-LS

	5 Benchmarks and Evaluations
	6 Conclusion
	7 Acknowledgment
	References
	8 Appendix

