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Abstract. We develop an open-source software tool, called PRoTECT,
for the parallelized construction of safety barrier certificates (BCs) for
nonlinear polynomial systems. This tool employs sum-of-squares (SOS)
optimization programs to systematically search for polynomial-type BCs,
while aiming to verify safety properties over four classes of dynamical sys-
tems: (i) discrete-time stochastic systems, (ii) discrete-time deterministic
systems, (iii) continuous-time stochastic systems, and (iv) continuous-
time deterministic systems. In particular, PRoTECT is the first software
tool that designs stochastic barrier certificates. PROTECT is implemented
in Python as an application programming interface (API), offering users
the flexibility to interact either through its user-friendly graphical user
interface (GUI) or via function calls from other Python programs. PRo-
TECT leverages parallelism across different barrier degrees to efficiently
search for a feasible BC.

1 Introduction

Motivation for PRoTECT. ! Formal verification of dynamical systems has
become a focal point over the past several years, primarily due to their
widespread integration into safety-critical systems [13]. Barrier certificates
(BCs) [19,20], also known as barrier functions, have emerged as a fundamental
solution approach, offering assurances regarding the safety behavior of diverse
classes of systems. Specifically, BCs can be employed to directly assess the behav-
ior of systems across continuous-state spaces with an uncountable number of
states, without resorting to discretization, which contrasts with abstraction-
based approaches [15]. This aspect is particularly noteworthy when considering
safety, (a.k.a. invariance) properties, wherein the state transitions of the sys-
tem remain within a region labeled as “safe”, ensuring no transitions occur to
any region labeled “unsafe”. In particular, barrier certificates, akin to Lyapunov
functions, are functions established over the system’s state space, fulfilling spe-
cific inequalities concerning both the function itself and the one-step transition
(or the flow) of the system. A suitable level set of a BC can segregate an unsafe
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region from all system trajectories originating from a specified set of initial con-
ditions. Hence, the presence of such a function offers a formal (probabilistic)
certification for system safety.

Related Work. A comprehensive overview of barrier certificates can be found
in [3,27]. BCs can verify systems with polynomial dynamics, designing poly-
nomial BCs using sum-of-squares techniques, e.g., via SOSTOOLS [21]. Some
alternative approaches explore verifying nonpolynomial systems, such as counter-
example guided inductive synthesis (CEGIS), leveraging satisfiability modulo
theories (SMT) solvers (e.g., Z3 [8] or dReal [10]). Other techniques encompass
neural barrier functions [17,29] and genetic programs [25]. While we focus on
using BCs for safety specifications, they also hold significant value for addressing
other temporal logic specifications [4,16].

The most significant tool dedicated to the construction of barrier certificates
is FOSSIL [1,9]. FOSSIL designs barrier certificates for discrete- and continuous-
time deterministic systems using the CEGIS approach, while facilitating ver-
ification and control synthesis for specifications including safety, reachability,
and reach-while-avoid. However, FOSSIL lacks support for stochastic systems,
whereas PRoTECT provides support for both discrete- and continuous-time
stochastic systems. Recently, two new tools for constructing barrier certificates
have been introduced. TRUST [11] is a data-driven tool that generates barrier
certificates for deterministic systems with unknown polynomial dynamics, using
only a single trajectory of collected data. In addition, CBFKIT [7] is a toolbox
designed for safe robotic planning. It supports both deterministic and stochastic
continuous-time dynamics but requires the user to provide a barrier function a
priori, which it then verifies for correctness—unlike PRoTECT, which automat-
ically synthesizes a barrier certificate to meet the required conditions.

Original Contributions. The primary contributions and noteworthy aspects
of our tool paper are as follows:

(i) We propose the first tool, employing SOS optimization techniques, that
verifies the safe behavior of four classes of dynamical systems: (i) discrete-
time stochastic systems (dt-SS), (ii) discrete-time deterministic systems (dt-
DS), (iii) continuous-time stochastic systems (ct-SS), and (iv) continuous-
time deterministic systems (ct-DS). In particular, PRoTECT is the first
software tool that offers stochastic barrier certificates.

(ii) PRoTECT is implemented in Python using SumOfSquares [28], and leverages
parallelization to efficiently search for BCs of different degrees, aiming to
satisfy the desired safety specifications.

(ili) PRoTECT supports normal, uniform, and exponential noise distributions
for dt-SS, as well as Brownian motion and Poisson processes for ct-SS.

(iv) PRoOTECT offers advanced GUTISs for all four classes of models, enhancing the
tool’s accessibility and user-friendliness.

The source code for PRoTECT, along with detailed guidelines on installation
and usage, including tutorial videos, are available at:
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https://github.com/Kiguli/PRoTECT

2 Problem Description

Safety Barrier Certificates. Consider a state set X in an n-dimensional
space, denoted as X C R™. Within this set, we identify two specific subsets: X7
and Xy, which represent the initial and unsafe sets, respectively. The primary
objective is to construct a function B(x), termed the barrier certificate, along
with constants v and A as the initial and unsafe level sets of B(x), as illustrated in
Fig. 1. Specifically, the design of the BC incorporates two conditions concerning
these level sets, in conjunction with a third criterion that captures the state
evolution of the system. Collectively, satisfaction of the conditions provides a
(probabilistic) guarantee that the system’s trajectories, originating from any
initial condition zo € X7, will not transition into the unsafe region X;,. We
now formally introduce the safety specification that we aim to investigate in this
work.

Fig. 1. A barrier certificate B(z) for a dynamical system. The dashed line denotes the
initial level set B(z) = 7.

Definition 1 (Safety). A safety specification is defined as ¢ = (X1, Xy, 7T),
where X1, Xy C X with X7 N Xy =0, and horizon T € NU {oo}. A dynamical
system X is considered safe over an (in)finite time horizon T, denoted as ¥ =1 ¢
if all trajectories of X2 starting from the initial set X7 never reach the unsafe set
Xy . If trajectories are probabilistic, the primary goal is to compute P{X =1

o} > &, with ¢ € [0, 1].

Overview of PROTECT. PRoTECT offers functionalities that automatically
generate BCs and verify the safety property across four distinct classes of sys-
tems. The description of the system serves as an input to the tool, triggering
the appropriate function. These functions are named as dt-SS, dt-DS, ct-SS
and ct-DS. Additionally, the geometric characteristics for sets of interest, which
define the safety specification according to Definition 1, constitute another input
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Algorithm 1: Parallel Construction of BCs

Data: system ¥, maximum polynomial degree P, required parameters K,.qq,
optional parameters Kopt

temp = [];
choose function func for X to identify the class of system;
forall the p € {2,4,..., P} in parallel do
barrier = func(p, Kreq, Kopt);
if barrier is SOS then

temp.append (barrier);

if ¥ is deterministic then

| // terminate all parallel processes
end

i =T L VU R -

9 end
10 end
// return element with highest confidence in temp
11 B(z) = max(temp);
Result: barrier certificate B(z), level sets 7, A; confidence ¢ and constant ¢ (for
dt-SS and ct-SS)

to the tool. While a GUI is designed to enhance the user-friendliness of PRo-
TECT, the BCs may also be verified via configuration files executed through the
command line. As the output, PRoTECT returns BC B(z), level sets v and A,
and, for stochastic systems, the value ¢ and the confidence level ¢ (cf. Sect. 3).

Utilizing methodologies from the sum-of-squares (SOS) domain, facilitated
by the SumOfSquares Python toolbox [28], PRoTECT adopts polynomial struc-
tures for BCs expressed as B(x) = Z;zl g;p;(x), with basis functions p;(z) that
are monomials over x, and unknown coefficients ¢ = [qo, . . ., ¢.] € R* that need
to be designed. PRoTECT leverages parallelization techniques to facilitate the
simultaneous verification of multiple BCs, differentiating them based on their
polynomial degrees, where degrees must be even [23]. In deterministic systerms,
upon finding a feasible BC, the parallel processing is terminated and the valid BC
is returned to the user. Conversely, for stochastic systems, PRoTECT awaits until
all potential solutions are fully processed, subsequently selecting and returning
the BC that offers the highest probabilistic confidence. This process is detailed
in the provided pseudo-code, illustrated in Algorithm 1.

Remark 1 Due to space limitations, this work focuses on the presentation of dt-
SS, given its complexity when handled by our tool. However, the other classes,
Python code snippets, and a comparison between FOSSIL and PRoTECT for the
deterministic classes can be found in the extended version of this work [26].

3 Discrete-Time Stochastic Systems

In this section, we define the notion of barrier certificates for discrete-time
stochastic systems (dt-SS). A dt-SS is a tuple X% = (X<, f), where: X C R



452 B. Wooding et al.

is a Borel space as the state set, ¢ is a sequence of independent and identically
distributed (i.i.d.) random variables from a sample space € to a measurable set
Ve, ie., c:={c(k): Q2 =V, ke N}, and f: X x V. — X is a measurable func-
tion characterizing the state evolution of the system. For a given initial state
z(0) € X, the state evolution of X is characterized by

ik +1) = f(x(k),<(k)), keN. (1)

The stochastic process z,: Q@ x N — X which fulfills (1) for any initial state
zg € X is referred to as the solution process of dt-SS at time k € N. PRoTECT
accommodates additive noise types across a range of distributions, including
uniform, normal, and exponential distributions. The notion of barrier certificates
for dt-SS is provided by the subsequent definition [20].

Definition 2 (BC for dt-SS). Consider the dit-SS ¥ = (X,s,f) and
X7, Xy C X. A function B: X — Ry is known as the barrier certificate (BC),
if there exists constants \,7y,c € RS‘, with X\ >y, such that

B(z) <+, Vze X, (2)
B(z) > A, Vxe Xy, (3)
E[B(f(:z:,g)) | x} < B(z)+ec, VreX, (4)

where B denotes the expected value of the system’s one-step transition, taken
with respect to <.

We now leverage the BC in Definition 2 and quantify a lower bound con-
fidence over the safety of dt-SS [12,14,20]. This lemma, commonly found in
the literature (e.g. [24]), provides the safety confidence for stochastic systems.
The same confidence formula applies to continuous-time stochastic systems (see
extended version [26, Section 6]).

Lemma 1 (Confidence ¢). For dt-SS %3, let there exist a BC as in Defini-
tion 2. Then the probability that trajectories of dt-SS starting from any initial
condition xog € Xz will not reach the unsafe region Xy within a finite time
horizon k € [0, 7] is quantified as

¢ = ]P’{acmo(k) ¢ Xy for all k € [0,T] |z = ac(())} >1- ”ACT. (5)

Under the assumption that f is a polynomial function of state xz and sets
X7, Xy, X are semi-algebraic—i.e., representable by polynomial inequalities—
the extended version [26] provides a reformulation of (2)(4) as an SOS optimiza-
tion program for designing a polynomial-type BC.

Remark 2 PRoTECT is equipped to accommodate any arbitrary number of
unsafe regions Xy, where i € {1,...,m}. In such scenarios, condition (3) should
be reiterated and enforced for each distinct unsafe region.
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Fig. 2. PRoTECT GUI for dt-SS, where required parameters, optional parameters, and
outputs are marked with blue, red, and yellow circles, respectively.

Graphical User Interface (GUI). To enhance accessibility and user-
friendliness of the tool, PROTECT offers the Model-View-Presenter architec-
ture incorporating a GUIL. Specifically, a GUI strengthens user-friendliness by
abstracting away implementation details for the code, allowing for a push-button
method to construct barrier certificates. In Fig. 2, colors and numbers are used
to denote labels. While PRoTECT provides GUIs for all four classes of systems
(see Fig.2 (blue-1)), we only depict it for dt-SS due to space constraints. Our
tool offers two implementations, either serial or parallel (red-6). The tool pro-
cesses the information entered into the GUI before executing the desired function
upon pressing the Find Barrier button (blue-8). Outputs of barrier certificate
B(x), confidence ¢, level sets v and A, and constant ¢ are displayed at (yellow-
1), (yellow-2), and (yellow-3), respectively. Optionally, the GUT allows for the
import and export of configuration parameters in JSON format using the Import
Config and Export Config buttons (red-7), with examples available in the folder
/ex/GUI_config files.
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Application Programming Interface (API). In general, the backend of
PRoTECT behaves as an API, with functions that can be called and used in
any python program. In the project folders /ex/benchmarks-stochastic and
/ex/benchmarks-deterministic, we provide some generic configuration files
which demonstrate how to use the functions in a standard python program.
The user is expected to provide the following required parameters: dimension of
the state set X C R™ (blue-2), indicated by dim, and the degree of the barrier
certificate (blue-3), denoted by b_degree. The lower and upper bounds of the
initial region X7, labeled as L_initial and U_initial; lower and upper bounds
of the unsafe region Xy, referred to as L_unsafe and U_unsafe; lower and upper
bounds for the state set X, denoted as L_space and U_space; where the value of
each dimension is separated with a comma (blue-4). Due to possible scenarios
with multiple unsafe regions, the unsafe region is passed to the functions as a
numpy array of numpy arrays describing each individual unsafe region. The tran-
sition map f is written as a SymPy expression? for each dimension using states
x1,x2, ... and noise parameters varsigmal,varsigma?2, ... (blue-5). The time
horizon 7', noted as t (blue-7). The distribution of the noise, NoiseType, can be
specified as either ¢ ‘normal’’, ¢ ‘exponential’’, or ¢ ‘uniform’’ (blue-6).

Users may also specify optional parameters, these include the degree of the
Lagrangian multipliers [;(x), L, (z), {(x): 1_.degree (red-1), which, if not specified
(i.e., set to None), will default to the same value as b_degree; the type of solver:
solver (red-5), that can be either set to ¢ ‘mosek’’ [6] or ¢ ‘cvxopt’’ [5]. The
confidence level ¢ in (5) can be optimized using optimize (red-2), if set to True.
In this case, due to having a bilinearity between v and A in (5), the user is
required to resolve this, e.g., select A = 1 (red-3). The tool will then optimize for
the other decision variables including v and ¢ to provide the highest confidence
level ¢. Alternatively, the user can select a minimum confidence level ¢ (red-4)
they require using confidence, so that PROTECT attempts to search for a BC
satisfying that confidence level. The parameters for the distributions should be
specified as follows (blue-6): for normal distributions, the mean p can be set
using mean, and the diagonal covariance matrix o can be provided using sigma.
For exponential distributions, the rate parameter for each dimension can be set
using rate. For uniform distributions, the boundaries for each dimension can be
set using a and b. We provide two functions for dt-SS (red-6): the first dt_SS
finds a barrier for a single degree, and the second parallel_dt_SS runs the first
function in parallel for all barrier degrees up to the maximum barrier degree
specified (also called b_degree).

2 https://docs.sympy.org/latest /tutorials/intro-tutorial /basic_operations.html.
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Table 1. Efficiency evaluation in BC construction for stochastic systems via PRoTECT.
We present case studies for the barrier degrees 4, optimizing for the barrier with the
highest confidence. Parameters v and c are designed via SOS optimization and A is
fixed a priori. VDP denotes the stochastic Van der Pol oscillator. All experiments were
conducted on a desktop computer (Intel i9-12900).

One Shot Stochastic Systems
n|system|7 b_degreely A e ¢  time (sec)
RoomTemp [18]|1|ct-SS |5 4 4.8¢7°10 19.6e750.99|0.16
RoomTemp [18]/1/dt-SS |5 |4 4.4¢7°]10 18.9¢7°/0.990.25
VDP [2] 2|dt-SS |5 14 N/A [1000N/A [N/A/1.65
exlin_1[19]  [2[ct-SS 5 4 1.39 |10 0.26 0.73/0.61
exnonlin_1 [19] 2|ct-SS |5 |4 3.34 |10 |0.53 0.40/0.61
TwoTanks [22] [2/dt-SS |5 |4 1.0e7%/10 13.4¢7%/0.99 1.25
RoomTemp [24]3/dt-SS |3 |4 1.1e7810 17.5¢7°/0.99 29.1
hi-ord 4 [1] 4lct-SS |3 14 0.02 |10 [0.02 [0.99 68.1

4 Benchmarking

Table1 and Table2 employ PRoTECT for stochastic benchmarks. In the ‘One
Shot’ setting with a fixed barrier degree of 4, as shown in Table1, PRoTECT
optimizes all parameters, v and ¢, during the SOS formulation, while X is fixed
a priori. Notably, the VDP example cannot find a barrier certificate with degree
4. Alternatively, the user can set a maximum degree and run computations
in parallel up to this degree, returning the barrier certificate with the highest
confidence. We call this the “Parallel” setting, as shown in Table 2, where A is
once again fixed a priori. Consequently, stochastic case studies typically require
longer completion times compared to the “One Shot” setting or parallelism for
deterministic systems (see extended version [26]), but at the gain of offering a
higher confidence, e.g. example ex_nonliny has a confidence improvement of 32%.
This is a trade-off the user should navigate based on their particular setting. The
parallelism introduces minimal overhead, and running the degrees in parallel is
19-27% faster than computing degrees (2, 4, 6) sequentially.

Remark 3 In Tablel, the VDP case does not yield an optimized solution for
A = 1000. However, by setting the minimum confidence level to ¢ = 0.8 (as
shown in red-4 in Fig. 2), feasible values for A, v, and ¢ can be identified with
confidence exceeding the specified threshold. These results are omitted from
Table 1 to maintain consistency in the comparison.
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Table 2. Efficiency evaluation in BC construction for stochastic systems via PRoTECT.

We

present case studies across three barrier degrees (2, 4, and 6), returning the barrier

with the highest confidence. Parameter A is fixed to a certain value and then v and ¢
are designed via SOS optimization. VDP denotes the stochastic Van der Pol oscillator.
All experiments were conducted on a desktop computer (Intel 19-12900).

5

Parallel Stochastic Systems
n/system|7 b_degreely A e ¢ |time (sec)
RoomTemp [18][1|ct-SS |5 |6 1.1e7%10  12.3¢77/0.99/0.33
RoomTemp [18]/1|dt-SS |5 |6 4.4¢77110 11.0¢77(0.99(0.53
VDP [2] 2/dt-SS 5 |6 97.5 [10003.53 0.88[14.3
exlin 1 [19]  2/ct-SS 56 0.34 (10 [0.04 0.95]1.73
exnonlin_1 [19] 2/ct-SS |5 6 1.84 |10 0.2 0.72]1.81
TwoTanks [22] [2|dt-SS |5 |4 1.0e75/10 13.4¢78/0.99/5.14
RoomTemp [24]|3|dt-SS |3 4 1.1e7810 |7.5¢7?/0.99|1501
hi-ord 4 [1] 4/ct-SS 316 1.8¢7310  11.2¢72/0.99/1308
Conclusion

This work introduced PRoTECT, a pioneer software tool utilizing SOS optimiza-
tion to explore polynomial-type BCs for verifying safety properties across four
classes of dynamical systems: dt-SS, dt-DS, ct-SS, and ct-DS. In particular, PRo-
TECT is the first software tool that designs stochastic barrier certificates. The
tool is developed in Python and incorporates a user-friendly GUI to enhance its
usability. Additionally, PRoTECT offers parallelization to concurrently search for
BCs of different degrees, ensuring an efficient construction. In the future, PRo-
TECT will be expanded to incorporate reachability and reach-while-avoid spec-
ifications, along with designing controllers using SOS optimization techniques.
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