
IMPaCT: Interval MDP Parallel
Construction for Controller Synthesis
of Large-Scale STochastic Systems

Ben Wooding(B) and Abolfazl Lavaei

School of Computing, Newcastle University,
Newcastle upon Tyne, UK

{ben.wooding,abolfazl.lavaei}@newcastle.ac.uk

Abstract. This paper is concerned with developing an open-source
software tool, called IMPaCT, for the parallelized verification and con-
troller synthesis of large-scale stochastic systems using interval Markov
chains (IMCs) and interval Markov decision processes (IMDPs), respec-
tively. The tool serves to (i) construct IMCs/IMDPs as finite abstrac-
tions of underlying original systems, and (ii) leverage interval iteration
algorithms for formal verification and controller synthesis over infinite-
horizon properties, including safety, reachability, and reach-avoid, while
offering convergence guarantees. IMPaCT is developed in C++ and
designed using AdaptiveCpp, an independent open-source implementa-
tion of SYCL, for adaptive parallelism over CPUs and GPUs of all hard-
ware vendors, including Intel and NVIDIA. IMPaCT stands as the first
software tool for the parallel construction of IMCs/IMDPs, empowered
with the capability to leverage high-performance computing platforms
and cloud computing services. Specifically, parallelism offered by IMPaCT
effectively addresses the challenges arising from the state-explosion prob-
lem inherent in discretization-based techniques applied to large-scale
stochastic systems. We benchmark IMPaCT across several physical case
studies, adopted from the ARCH tool competition for stochastic models,
including a 2-dimensional robot, a 3-dimensional autonomous vehicle, a
5-dimensional room temperature system, and a 7-dimensional building
automation system. To show the scalability of our tool, we also employ
IMPaCT for the formal analysis of a 14-dimensional case study.

Keywords: Interval Markov chain · interval Markov decision process ·
automated controller synthesis · large-scale stochastic systems · parallel
construction · cloud computing

1 Introduction

Large-scale stochastic systems serve as a crucial modeling framework for charac-
terizing a wide array of real-world safety-critical systems, encompassing domains
such as power grids, autonomous vehicles, communication networks, smart build-
ings, energy systems, and so on. The intended behavior of such complex systems
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Hillston et al. (Eds.): QEST+FORMATS 2024, LNCS 14996, pp. 249–267, 2024.
https://doi.org/10.1007/978-3-031-68416-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68416-6_15&domain=pdf
https://doi.org/10.1007/978-3-031-68416-6_15

250 B. Wooding and A. Lavaei

can be formally expressed using high-level logic specifications, e.g. linear tempo-
ral logic (LTL) expressions [8]. Automating the formal verification and controller
synthesis for these complex systems that fulfill LTL specifications is an exceed-
ingly formidable challenge (if not impossible), primarily due to the uncountable
nature of states and actions in continuous spaces.

To tackle the computational complexity challenges that arise, one promising
solution is to approximate original (a.k.a. concrete) systems with simpler mod-
els featuring finite state sets, commonly referred to as finite abstractions [10,39].
When the underlying models are stochastic, these simplified representations com-
monly adopt the structure of Markov decision processes (MDPs), where dis-
crete states mirror sets of continuous states in the concrete model (similarly for
inputs). In practical implementation, constructing such finite abstractions usu-
ally entails partitioning the state and input sets of concrete models according
to predefined discretization parameters, as discussed in various works includ-
ing [3,18,22,28,41,45].

Within the finite MDP scheme, one can (i) initially leverage it as an appro-
priate substitute for the original system, (ii) proceed to synthesize controllers for
the abstract system, and (iii) ultimately refine the controller back over the con-
crete model, facilitated by an interface map. Given that the disparity between
the output of the original system and that of its abstraction is accurately quan-
tified, it becomes feasible to ensure that the concrete system fulfills the same
specification as the abstract counterpart under some quantified accuracy level.
However, this accuracy level is only acceptable for finite-horizon specifications
since it converges to infinity as time approaches infinity (cf. (4)), rendering MDPs
impractical for infinite-horizon properties in this setting.

As a promising alternative, interval Markov decision processes (IMDPs) [15,
37] have emerged in the literature as a potential solution for formal verification
and controller synthesis of stochastic systems fulfilling infinite-horizon specifica-
tions. Specifically, IMDPs offer a comprehensive approach by incorporating both
upper and lower bounds on the transition probabilities among finite abstrac-
tion cells. This is accomplished by solving a (multiplayer) game which allows
to extend satisfaction guarantees to infinite time horizons. However, the con-
struction of IMDPs is more complicated compared to traditional MDPs as it
necessitates the computation of both lower and upper bounds for transition
probabilities among partition cells.

Abstraction-based techniques, including those used for constructing either
MDPs or IMDPs, encounter a significant challenge known as the curse of dimen-
sionality. This phenomenon refers to the exponential growth in computational
complexity as the number of state dimensions increases. To alleviate this, we offer
scalable parallel algorithms and efficient data structures designed for constructing
IMCs/IMDPs and automating the process of verification and controller synthe-
sis over infinite time horizons. In particular, by dividing the computations into
smaller concurrent operations, we effectively mitigate the overall complexity by
a factor equivalent to the number of threads available. This approach not only
enhances computational efficiency of IMC/IMDP construction, but also facilitates

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 251

the practical application of these techniques in real-world scenarios with high-
dimensional spaces.

1.1 Original Contributions

The primary contributions and noteworthy aspects of our tool paper include:

(i) We propose the first tool that constructs IMCs/IMDPs as abstractions
of large-scale discrete-time stochastic systems while providing convergence
guarantees. Our tool leverages the constructed IMCs/IMDPs for formal ver-
ification and controller synthesis ensuring the fulfillment of desired infinite-
horizon temporal logic specifications, encompassing safety, reachability, and
reach-while-avoid properties.

(ii) IMPaCT is implemented in C++ and runs in parallel using AdaptiveCpp1

based on SYCL2. AdaptiveCpp eliminates from the user the need to imple-
ment cross-platform flexibility manually, serving as a strong foundation for
CPU and GPU implementations.

(iii) IMPaCT leverages interval iteration algorithms [17] to provide convergence
guarantees to an optimal controller in scenarios with infinite time horizons.

(iv) IMPaCT accepts bounded disturbances and natively supports additive
noises with different practical distributions including normal and user-
defined distributions.

(v) We leverage IMPaCT across diverse real-world applications such as auto-
nomous vehicles, room temperature systems, and building automation sys-
tems. This broadens the scope of formal method techniques to encompass
safety-critical applications that require satisfaction within infinite time hori-
zons. The outcomes demonstrate significant efficiency in computational time.

The source code for IMPaCT along with comprehensive instructions on how
to build and operate it, including YouTube video guides, can be located at:

https://github.com/Kiguli/IMPaCT

Due to space constraints, comprehensive information on traditional serial
algorithms, proposed parallel algorithms, case studies, etc. can be found in the
extended version of the paper [44].

1.2 Related Literature

IMDPs have become the source of significant interest inside the formal methods
community over the past few years. In particular, IMDPs have been used for
model-based verification and control problems [12–14,19,43] as well as more
recently being used for data-driven learning problems [20,29,33]. There exists a
limited set of software tools available for the formal verification and controller

1 https://github.com/AdaptiveCpp/AdaptiveCpp/.
2 https://www.khronos.org/sycl/.

https://github.com/Kiguli/IMPaCT
https://github.com/AdaptiveCpp/AdaptiveCpp/
https://www.khronos.org/sycl/

252 B. Wooding and A. Lavaei

synthesis of stochastic systems over (in)finite horizons, encompassing various
classes of stochastic models, using abstraction-based techniques.

FAUST2 [38] constructs finite MDPs for continuous-space discrete-time
stochastic processes and conducts formal analysis for safety and reachability
specifications. Nonetheless, the original MATLAB implementation of FAUST2

encounters scalability issues, particularly for large models, due to the curse of
dimensionality. StocHy [11] offers formal verification and synthesis frameworks
for discrete-time stochastic hybrid systems via finite MDPs. While a small seg-
ment of StocHy addresses IMDPs, its primary implementation relies on the value
iteration algorithm [26], which lacks convergence guarantees when dealing with
infinite-horizon specifications. This limitation has been widely pointed out in the
relevant literature (see e.g., [9,16,17]). For the assurance of convergence to an
optimal controller, it is essential to utilize interval iteration algorithms. This is a
key feature of our tool on top of offering parallelization, which both set IMPaCT
apart from StocHy. In particular, IMPaCT offers a notably more comprehensive
and versatile approach for addressing infinite-horizon specifications and stands
as the first tool dedicated to IMC/IMDP construction with convergence guaran-
tees.

A recent update to PRISM [25] supports robust verification of uncertain mod-
els including IMDPs. However, PRISM language describes the IMDP states and
transitions symbolically for discrete-space systems, rather than continuous-space
ones as considered by IMPaCT. Furthermore, our tool introduces parallel imple-
mentations of IMDP abstraction and synthesis algorithms, efficiently automating
the IMDP construction process. SySCoRe [42] is a MATLAB toolbox that derives
simulation relations and presents an alternative methodology for the controller
synthesis of stochastic systems satisfying co-safe specifications over infinite hori-
zons. A recent tool, IntervalMDP.jl [32], implemented in Julia, was developed
concurrently to IMPaCT, providing controller synthesis on CPU/GPU platforms.
However, while IMPaCT offers both parallel IMC/IMDP construction and con-
troller synthesis capabilities, IntervalMDP.jl is primarily focused on synthesis.
More importantly, IMPaCT leverages the essential interval iteration algorithm
to offer convergence guarantees, while IntervalMDP.jl relies on the value itera-
tion algorithm, which lacks convergence guarantees when dealing with infinite-
horizon specifications [17]. IMPaCT also handles safety specifications in addition
to reachability and reach-avoid properties. These features distinguish IMPaCT
from IntervalMDP.jl, as well as a few other tools like StocHy [11], which provide
support for IMCs/IMDPs with value iteration as the default choice and lack gen-
eral parallelization capabilities. Another tool, AMYTISS [27], also employs par-
allel implementations but exclusively for constructing MDPs using PFaces [24],
built upon OpenCL, without any support for IMDP models. In addition, our tool
is developed using SYCL, which facilitates parallel processing and offers broader
utility than PFaces. In particular, AdaptiveCpp (formerly OpenSYCL) [5,6],
employed in IMPaCT, provides a sturdy foundation for flexible cross-platform
parallel processing on CPUs and GPUs from the major hardware vendors such
as Intel, NVIDIA, etc., which is not the case in AMYTISS.

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 253

1.3 Overview of IMPaCT

IMPaCT is an object-oriented software tool developed in C++, serving as an
Application Programming Interface (API), which facilitates the construction and
utilization of IMDP objects for addressing verification and synthesis challenges.
The GitHub repository includes numerous examples of configuration files show-
casing the tool’s versatility across different contexts. The tool takes as input
a description of the discrete-time stochastic control system (dt-SCS) Σ and
the specification ψ for an infinite-time (or finite-time) horizon, chosen from the
options of safety, reachability, and reach-while-avoid properties. It then gener-
ates an HDF5 [40] file as output, containing a lookup table C with a list of states
x̂ along with the corresponding minimal (Pψmin) and maximal (Pψmax) proba-
bilities of satisfying the specification. In synthesis cases, the tool will synthesize
the optimal control policy π for each state. IMPaCT automatically determines
whether the user intends to solve a synthesis problem using an IMDP or a ver-
ification problem using an IMC, based on whether the input space is defined.
Likewise, it automatically identifies whether the problem pertains to reachability
or reach-while-avoid, depending on whether the avoid region is defined.

2 Discrete-Time Stochastic Control Systems

A formal description of discrete-time stochastic control systems, serving as the
underlying dynamics of our tool, is presented in the following definition.

Definition 1 (dt-SCS). A discrete-time stochastic control system (dt-SCS) is
a quintuple

Σ = (X,U,W, ς, f), (1)

where

– X ⊆ R
n, U ⊆ R

m, W ⊆ R
p are Borel spaces as, respectively, the state, input,

and disturbance sets;
– ς is a sequence of independent and identically distributed (i.i.d.) random vari-

ables from a sample space Ω to a measurable set Vς

ς := {ς(k) : Ω → Vς , k ∈ N};

– f : X × U × W × Vς → X is a measurable function characterizing the state
evolution of the system.

For a given initial state x(0) ∈ X, an input sequence u(·) : Ω → U , and a
disturbance sequence w(·) : Ω → W , the state evolution of Σ is characterized
by

Σ : x(k + 1) = f(x(k), u(k), w(k), ς(k)), k ∈ N. (2)

To facilitate a more straightforward presentation of our contribution, we illus-
trate our algorithms by incorporating stochasticity with normal distributions.
Nevertheless, our tool is capable of handling problems involving any arbitrary
distributions via a custom user-defined distribution.

254 B. Wooding and A. Lavaei

A dt-SCS has been shown to be equivalent to a continuous-space Markov
decision process [23] as the following definition, where a conditional stochastic
kernel T captures the evolution of Σ and can be uniquely determined by the
pair (ς, f) from (1).

Definition 2 (Continuous-Space MDPs). A continuous-space Markov deci-
sion process (MDP) is a quadtuple

Σ = (X,U,W, T), (3)

where

– X, U , and W are as in Definition 1;
– T : B(X)×X ×U ×W → [0, 1] is a conditional stochastic kernel that assigns

any x ∈ X, u ∈ U , and w ∈ W , a probability measure T (·|x, u, w), on the
measurable space (X,B(X)) so that for any set A ∈ B(X),

P

{
x(k + 1) ∈ A

∣∣ x(k), u(k), w(k)
}

=
∫

A

T (dx(k + 1)
∣∣ x(k), u(k), w(k)).

To construct a traditional finite MDP (i.e., an MDP with finite spaces), the
continuous spaces X,U,W are constructed from a finite number of partitions
Xi,Ui,Wi, where X = ∪nu

i=0X
i, U = ∪nx

i=0U
i,W = ∪nw

i=0W
i. The number of par-

titions nx, nu, nw can be computed based on discretization parameters ηx, ηu, ηw,
chosen by the user, which defines the size of regions Xi,Ui,Wi, respectively.
Each finite partition can be identified by some representative points x̂i ∈ Xi,
ûi ∈ Ui, ŵi ∈ Wi; the collections of all representative points can now be con-
sidered as the finite sets X̂, Û , Ŵ of the finite MDP. Using a map Ξ : X → 2X ,
one can assign any continuous state x ∈ X to the partition Xi, where x ∈ Xi.
Additionally, a map Πx : X → X̂ assigns any continuous state x ∈ X to the
representative point x̂ ∈ X̂ of the corresponding partition containing x. The
map Πx satisfies the inequality

‖Πx(x) − x‖2 ≤ ηx, ∀x ∈ X,

with ηx being a state discretization parameter. Using these mappings, the tran-
sition function f̂ and the transition probability matrix T̂ within the finite MDP
construction are defined as f̂(x̂, û, ŵ, ς) = Πx(f(x̂, û, ŵ, ς)) and T̂ (x̂′|x̂, û, ŵ) =
T (Ξ(x̂′)|x̂, û, ŵ), respectively [30, Alg. 1 & Thm. 2.2].

Of particular importance to this work, an accuracy level ρ regards the differ-
ence between probabilities of satisfaction of the desired specification ψ over the
continuous-space system Σ and its finite MDP counterpart Σ̂. This accuracy
level ρ can be computed a-priori as the product of the Lipschitz constant H
of the stochastic kernel, the Lebesgue measure L of the state space, the state
discretization parameter ηx, and the finite horizon K, as the following:

∣∣P(Σ |= ψ) − P(Σ̂ |= ψ)
∣∣ ≤ ρ = KHL ηx. (4)

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 255

3 Interval Markov Decision Processes

The finite MDP presented in Sect. 2 is not suitable for infinite-horizon problems
due to the inclusion of the time horizon K in (4). In particular, as K → ∞
then ρ → ∞, implying that the abstraction will be of no use to providing satis-
faction guarantees. To alleviate this, a continuous-space MDP Σ in (3) can be
finitely abstracted by an interval Markov decision process. Specifically, IMDPs
provide bounds over the transition probability of the stochastic kernel T , offering
a reliable model for analyzing infinite-horizon specifications, as outlined in the
subsequent definition.

Definition 3 (IMDPs). An interval Markov decision process (IMDP) is
defined as a quintuple

Σ̂ = (X̂, Û , Ŵ , T̂min, T̂max),

where

– X̂ = {x̂0, x̂1, . . . x̂nx
}, Û = {û0, û1, . . . ûnu

}, Ŵ = {ŵ0, ŵ1, . . . ŵnw
}, with x̂i,

ûi, and ŵi being the representative points within Xi, Ui, Wi, respectively;
– T̂min is a conditional stochastic kernel for the minimal transition probability,

computed as

T̂min(x̂′ | x̂, û, ŵ) = min
x∈Ξ(x̂)

T (Ξ(x̂′) |x, û, ŵ), ∀x̂, x̂′ ∈ X̂, ∀û ∈ Û , ∀ŵ ∈ Ŵ ,

with x ∈ Ξ(x̂), and where the map Ξ : X → 2X assigns to any x ∈ X, the
corresponding partition element it belongs to, i.e., Ξ(x) = Xi if x ∈ Xi;

– T̂max is a conditional stochastic kernel for the maximal transition probability,
computed similarly as

T̂max(x̂′ | x̂, û, ŵ) = max
x∈Ξ(x̂)

T (Ξ(x̂′) |x, û, ŵ), ∀x̂, x̂′ ∈ X̂, ∀û ∈ Û , ∀ŵ ∈ Ŵ,

where T̂min ≤ T̂max, and
∑

x̂′∈X̂

T̂min(x̂′ | x̂, û, ŵ)≤1≤
∑

x̂′∈X̂

T̂max(x̂′ | x̂, û, ŵ).

Although IMDPs incur higher computational costs compared to traditional
MDPs, leveraging lower and upper bound probabilities for state transitions facil-
itates the resolution of infinite-horizon control problems. It is worth mentioning
that since X̂, Û , Ŵ are all finite sets, T̂min and T̂max can be represented by static
matrices of size (nx × nu × nw) by nx. This enables the use of powerful iterative
algorithms. In the code, an IMDP object should be constructed by defining the
dimension of state, input and disturbance:

1 IMDP(const int x, const int u, const int w);

Listing 1.1. Creating IMDP object.

In a broader scope, matrix and vector manipulations are implemented using
the C++ library Armadillo [35,36], and the sets X̂, Û , Ŵ are defined using the
object’s function calls:

256 B. Wooding and A. Lavaei

1 void setStateSpace(vec lb , vec ub, vec eta);

2 void setInputSpace(vec lb , vec ub, vec eta);

3 void setDisturbSpace(vec lb, vec ub, vec eta);

Listing 1.2. Construction of X̂, Û , and Ŵ

Additionally, users are required to configure the noise by selecting either
normal distributions or a user-defined distribution, see the extended version [44,
Sec. 4.1] for details.

3.1 Complexity Analysis for Serial Construction of IMDP

The computational complexity of IMDP construction comprises two main com-
ponents. The first, often termed the curse of dimensionality, describes the expo-
nential rise in computational time concerning system dimensions, expressed as
O(2d), where d = (nn

xi
× nm

uj
× np

wk
) × nn

xi
, with nxi

, nuj
, and nwk

being the
dimension-wise counts of partitions within X̂, Û , and Ŵ , respectively, where
i = 1, . . . , n, j = 1, . . . ,m, and k = 1, . . . , p. Given that the construction of
IMDP abstraction involves both lower and upper bound transition matrices T̂min

and T̂max, respectively, the computational complexity d is doubled.
The second part pertains to the computational complexity of the nonlin-

ear optimization required for the IMDP construction, represented as O(κ). The
level of complexity κ hinges on the algorithm chosen by the user. We imple-
ment the nonlinear optimization algorithms via NLopt [21], where the default
(nlopt::LN SBPLEX [34]) is a variant of the derivative-free Nelder-Mead Simplex
algorithm. Consequently, the overall complexity of IMDP construction amounts
to O(2κd).

3.2 Temporal Logic Specifications

IMPaCT inherently handles specifications including safety, reachability, and
reach-avoid, as formally articulated via logical operators always �, eventually
♦, and until U, in the following definition.

Definition 4 (Specifications). The specifications of interest ψ, handled by
IMPaCT, are defined as

– ψ := �S - safety; the system should always remain within a safe region
S ⊆ X.

– ψ := ♦T - reachability; the system should eventually reach some target region
T ⊆ X.

– ψ := S U T - reach-while-avoid; the system should remain within the safe
region S = X\(A ∪ T) until it reaches the target region T ⊆ X, with A ⊆ X
being an avoid region.

When constructing IMCs/IMDPs, we aim at labeling the states within the
state space based on the specification, this is especially beneficial for the verifi-
cation or controller synthesis. We now relabel states from the state space that

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 257

belong to the target set x̂ ∈ T as target states r̂ and assume that all of these
states are absorbing states. Similarly, we relabel any states from the state space
that also belong to the avoid region x̂ ∈ A as avoid states â, treating the avoid
region as an absorbing area. We explicitly treat the remaining states x̂ as part of
the safe state space, denoted by x̂ ∈ S. This relabelling is computed by calling
the following commands, where remove should be True to relabel the states:

1 void setTargetSpace(const function <bool(const vec&) >&

separate_condition , bool remove);

2 void setAvoidSpace(const function <bool(const vec&) >&

separate_condition , bool remove);

3 void setTargetAvoidSpace (const function <bool(const vec&) >&

target_condition ,const function <bool(const vec&) >&

avoid_condition , bool remove);

Listing 1.3. Construction of S, T and A.

Due to the absorbing properties, the avoid and target regions are commonly
modeled as a single state to simplify the algorithms. Transition probabilities
to these states can be summed together for these new states. Accordingly, we
introduce static vectors that capture the minimum and maximum probabilities
of transitions to target (R̂min and R̂max) and avoid (Âmin and Âmax) regions,
with row entries calculated by

R̂min(x̂, û, ŵ) =
∑

∀r̂∈T
T̂min(r̂ | x̂, û, ŵ), R̂max(x̂, û, ŵ) =

∑
∀r̂∈T

T̂max(r̂ | x̂, û, ŵ),

Âmin(x̂, û, ŵ) =
∑

∀â∈A
T̂min(â | x̂, û, ŵ), Âmax(x̂, û, ŵ) =

∑
∀â∈A

T̂max(â | x̂, û, ŵ).

T̂min and T̂max are then reduced to consider only transitions between states
in S. Therefore, one can redefine the IMDP depending on the specification as
Σ̂ = (X̂, Û , Ŵ , T̂min, T̂max, R̂min, R̂max, Âmin, Âmax). The construction of these
vectors is described in detail in the serial algorithm in the extended version [44,
Alg. 1].

4 Parallel Construction of IMDP

In this section, we propose the required commands for parallel construction
of IMDPs as offered by IMPaCT. This IMDP construction is required for our
controller synthesis approach, discussed in Sect. 5. The details of the proposed
parallel algorithm can be found in the extended version [44, Alg. 2].

1 void minTransitionMatrix ();

2 void maxTransitionMatrix ();

3 void minTargetTransitionVector ();

4 void maxTargetTransitionVector ();

5 void minAvoidTransitionVector ();

6 void maxAvoidTransitionVector ();

Listing 1.4. Abstraction of transition matrices.

258 B. Wooding and A. Lavaei

Remark 1. In IMPaCT, given that the state space is bounded, certain case studies
may entail the possibility of transitions extending beyond the defined state space.
Such transitions are considered as transitions to the avoid region, since leaving
the state space should be avoided. This behavior is captured in the functions for
transitions to avoid states, and therefore in such scenarios, even if no avoid region
is present inside the state space, the functions minAvoidTransitionVector()
and maxAvoidTransitionVector() should still be called.

4.1 Complexity Analysis for Parallel Construction of IMDP

Parallelization offered by IMPaCT enhances the performance of solving both
abstraction and synthesis problems. Using O(κ) to represent the optimization
complexity, the computational complexity of our proposed parallel algorithm is
O(2κd

threads), where d = (nn
xi

× nm
uj

× np
wk

) × nn
xi

, and threads is the number of
parallel threads running. It is worth highlighting that the chosen algorithm in
IMPaCT can be readily swapped to any other nonlinear optimization algorithm
from NLopt3 using a dedicated function inside the tool:

1 void setAlgorithm(nlopt :: algorithm alg);

Listing 1.5. Set NLopt algorithm.

4.2 Low-Cost Abstraction

The primary bottleneck in the IMDP abstraction arises from the necessity of
computing two transition probability matrices, coupled with the additional com-
putational load of min/max optimization. To enhance performance, by comput-
ing the matrix T̂max first, the computations required for T̂min can be reduced.
This is due to the fact that for any matrix entry T̂max(i, j) = 0, one has
T̂min(i, j) = 0. The sparser the matrix, the more efficient the abstraction com-
putation; we refer to this as low-cost abstraction. The corresponding commands
for this are:

1 void transitionMatrixBounds ();

2 void targetTransitionMatrixBounds ();

Listing 1.6. Low-cost abstractions.

5 Controller Synthesis with Interval Iteration

We now synthesize a controller, via the constructed IMDP, to enforce infinite-
horizon properties over the dt-SCS. When dealing with infinite-horizon prob-
lems, the interval iteration algorithm is capable of providing convergence guar-
antees unlike the common value iteration [17]. In particular, the interval iteration
algorithm converges to an under-approximation and over-approximation of the
3 https://nlopt.readthedocs.io/en/latest/NLopt Algorithms/.

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 259

satisfaction probability associated with a temporal logic specification. The trade-
off for achieving such a guarantee is the doubled computational load compared
to the value iteration algorithm.

In essence, the interval iteration algorithm iterates over two Bellman equa-
tions simultaneously; one assuming an initial probability vector of zeros, denoted
by V0 = 0n, and the other an initial vector of ones, represented as V1 = 1n.
When calculating V ′

0 and V ′
1 as the next iteration step, a dynamic program

with decision variables R̂, Â, and T̂ needs to be solved [17]. These algorithm
parameters are known as the feasible distribution. We provide two ways to solve
this dynamic program, described in Sect. 6. To do so, the following optimization
should be minimized with respect to disturbance ŵ and maximized concerning
the input û:

max
û∈Û

min
ŵ∈Ŵ

optimize
R̂,Â,T̂

δ1R̂(x̂, û, ŵ) + δ2Â(x̂, û, ŵ) +
∑

∀x̂′∈X̂

δ3(x̂′)T̂ (x̂′|x̂, û, ŵ), (5)

with weight functions δ1, δ2, and δ3(·), and being subject to the following con-
straints [17]:

T̂min(x̂′|x̂, û, ŵ) ≤ T̂ (x̂′|x̂, û, ŵ) ≤ T̂max(x̂′|x̂, û, ŵ),

R̂min(x̂,û,ŵ)≤R̂(x̂,û,ŵ)≤R̂max(x̂,û,ŵ), Âmin(x̂,û,ŵ)≤Â(x̂,û,ŵ)≤Âmax(x̂,û,ŵ),

R̂(x̂, û, ŵ) + Â(x̂, û, ŵ) +
∑

∀x̂′∈X̂

T̂ (x̂′|x̂, û, ŵ) = 1.

For further details, R̂ mimics s+ and Â mimics s− in [17]. The corresponding
weights are updated at each iteration step, where δ1 and δ2 depend on the
specification and δ3 is derived from either V0 or V1. For reachability (and reach-
avoid) specifications, we set δ1 = 1 and δ2 = 0. For safety, in order to ensure
convergence of the algorithm (described in detail in the extended version of this
paper [44, Sec. 5.1]), we frame the problem as the complement of reaching the
avoid region. Therefore, we set δ1 = 0 and δ1 = 1, and subsequently derive the
complement of the converged solution from V0 and V1. The following equations
that describe the interval iteration process. When the dynamic program is solved
and the optimal feasible solutions T̂ , R̂, and Â are found, the interval iteration
algorithm solves the two equations

{
V ′
0 = δ1R̂ + δ2Â + T̂ V0,

V ′
1 = δ1R̂ + δ2Â + T̂ V1,

to find the new probabilities of satisfying the specification for the state-input-
disturbance triples. Prior to the subsequent iteration, V0 and V1 are, respectively,
updated to V ′

0 and V ′
1 . The interval iteration algorithm terminates when the two

vectors converge, ‖V1 − V0‖∞ ≤ ε, where ε is set by default to a small enough
threshold.

The underlying synthesis technique is equivalent to a three-and-a-half player
game with a max-min optimization problem, where the input and disturbance are

260 B. Wooding and A. Lavaei

two players. In particular, treating the disturbance as an adversary to the system
entails minimizing the probability concerning the disturbance while maximizing
it concerning the control inputs. The third player (“optimize” in (5)) represents
the range across the targeted partition addressed by the optimization program,
acting adversarially (minimization) in computing Pψmin and angelically (maxi-
mization) when computing Pψmax . The serial algorithms for synthesis of safety
and reach-while-avoid specifications are detailed in the extended version [44, Alg.
3 & Alg. 4].

Remark 2. In certain scenarios, such as the presence of absorbing states beyond
those already outlined in the target and/or avoid regions, the two bounds of the
interval iteration algorithm may be mathematically impossible to converge, see
extended version [44] for details. IMPaCT offers detailed guidance via output to
the terminal for resolving such scenarios, including the example ex load safe.

6 Parallel Controller Synthesis with Interval Iteration

We propose parallel algorithms for safety (extended version [44, Alg. 5]) and
reach-while-avoid (extended version [44, Alg. 6]) to enhance the computational
efficiency of controller synthesis procedure acquiring the resulting controller
C = (S, π,Pψmin ,Pψmax), where π is the optimal control policy. In particular,
the synthesis process includes solving several dynamic programs and two inter-
val iteration algorithms in a parallel fashion. To solve the dynamic programs,
we either use the GNU linear programming kit (GLPK) [31] to solve a linear
program, or use the sorting approach for synthesis outlined in [37, Lemma 7],
which provides a significant increase in synthesis efficiency over CPU as well
as removing the reliance on external function libraries to enable synthesis over
GPUs. It should be noted that for smaller models, GPU synthesis may not yield
substantial performance enhancements compared to CPU synthesis (cf. Table 2).

A Boolean value, IMDP lower, is set as true for a pessimistic policy, or false
for an optimistic policy. For finite-horizon controllers, an additional parameter
is needed for the time horizon. The finite-horizon specifications are supported
within IMDP synthesis by replacing the while loop in the algorithms of the
extended version (i.e., [44, Alg. 3 & Alg. 4]) with a for loop over a finite number of
time intervals. We still compute each bound Pψmax and Pψmin separately, and find
the optimal policy π. It is worth mentioning that for finite-horizon specifications,
interval iteration can be reduced to value iteration, since convergence is not
required. The synthesis commands using GLPK are:

1 void setStoppingCondition(double eps);

2 void infiniteHorizonReachController (bool IMDP_lower);

3 void infiniteHorizonSafeController(bool IMDP_lower);

4 void finiteHorizonReachController(bool IMDP_lower , size_t

timeHorizon);

5 void finiteHorizonSafeController(bool IMDP_lower , size_t

timeHorizon);

Listing 1.7. Synthesis Algorithms.

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 261

With the sorted approach, synthesis can be readily computed by appending
Sorted to the desired synthesis function. As demonstrated in Table 1 and Table 2,
the sorted approach yields significant performance improvements for both CPU
and GPU computations across various example classes.

1 void infiniteHorizonReachControllerSorted(bool IMDP_lower);

2 void infiniteHorizonSafeControllerSorted(bool IMDP_lower);

3 void finiteHorizonReachControllerSorted(bool IMDP_lower ,

size_t timeHorizon);

4 void finiteHorizonSafeControllerSorted(bool IMDP_lower ,

size_t timeHorizon);

Listing 1.8. Sorted Synthesis Algorithms.

Remark 3. In the current implementation, the sorting process itself is not paral-
lelized and utilizes std::sort, while subsequent computations are parallelized.
Implementing a parallel sorting algorithm manually could be regarded as a
potential future extension to IMPaCT. It is worth noting that for large systems,
the sorting method still offers substantial benefits over GLPK.

Remark 4. The functions for sorted synthesis and for saving and loading
files, as described in the following section, can be found in the source file
GPU synthesis.cpp, which is included by the main source file IMDP.cpp. This
separation is intentional to prevent compilation errors relating to external func-
tion libraries when employing GPU. For GPU synthesis, the configuration file
should load all required matrices and vectors before invoking the sorted app-
roach. The Makefile also needs to be modified to ensure that --acpp-targets
flag specifies the GPU architecture, e.g. cuda:sm 80. Furthermore, in the Make-
file, IMDP.cpp should be substituted with GPU synthesis.cpp. For an illustra-
tion, see the example ex GPU.

7 Loading and Saving Files

We use HDF5 [40] as the data format for saving and loading files into IMPaCT. In
particular, HDF5 is a common widely supported format for large, heterogeneous,
and complex data sets. This data structure is self-descriptive, eliminating the
need for extra metadata to interpret the files. Additionally, it supports “data
slicing”, enabling extraction of specific segments from a dataset without the
necessity of analyzing the entire set. The primary advantage of HDF5 lies in
its open format, which ensures native support across numerous programming
languages and tools, such as MATLAB, Python, and R. This should facilitate
simpler sharing of synthesized controllers without requiring end-users to install
additional programs. Loading the abstraction also facilitates compatibility with
data-driven approaches for controller synthesis, such as those described in [7].
Details of the commands to load and save files can be found in the extended
version [44, Sec. 7].

262 B. Wooding and A. Lavaei

8 Benchmarking and Case Studies

We illustrate IMPaCT’s applications by employing multiple well-known bench-
mark systems, adopted from the ARCH tool competition for stochastic mod-
els [1,2,4], encompassing safety, reachability, and reach-avoidance specifications
across infinite horizons. Among these, we leverage several complex physical case
studies, encompassing a 2D robot, a 3D autonomous vehicle, 3D and 5D room
temperature control systems, as well as 4D and 7D building automation sys-
tems. We also consider a 14D case study used for the purposes of showing the
scalability of the tool. In Table 1, we showcase the underlying details of these
case studies, including memory usage and computation time, all executed over
an infinite time horizon using the GLPK library utilizing the sorting method. It
is noteworthy that for the smallest case studies the GLPK library outperforms
the sorting method, likely due to the overhead associated with sorting the states
before solving Eq. (5). In Table 2, we contrast the GLPK library with the sorting
method from [37, Lemma 7] over both CPU and GPU, demonstrating notable
efficiency of the latter in terms of computation time for larger models. Future
extensions aimed at enhancing the sorting algorithms, such as implementing par-
allel sorting techniques, could potentially enhance the efficiency of the tool. The
description of all case studies together with simulation results can be found in
the extended version [44, Sec. 8].

8.1 Comparisons

As previously discussed in the introduction, StocHy utilizes the value itera-
tion algorithm for IMDP construction, which lacks convergence guarantees for
infinite-horizon specifications. In contrast, IMPaCT employs the interval iteration
algorithm to guarantee convergence to an optimal controller. This crucial feature,
in addition to offering parallelization, distinguishes IMPaCT from StocHy, which
defaults to value iteration without general parallelization capabilities. Beyond
this guarantee, we aim to execute the 14D case study using StocHy to show-
case the efficiency of our tool. While IMPaCT completed the IMDP construction
within an hour (53 minutes), as detailed in Table 1, StocHy failed to complete
the task within a 24-hour time frame. We have refrained from including com-
parisons with PRISM or IntervalMDP.jl, given that our focus on demonstrating
the applicability of our tool through case studies involves large continuous-space
transition systems, which are challenging to describe using the PRISM language
or IntervalMDP.jl that focuses on discrete-space models.

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 263

T
a
b
le

1
.

E
x
ec

u
ti

o
n

ti
m

es
a
n
d

m
em

o
ry

re
q
u
ir

em
en

ts
o
f
IM

P
aC

T
a
p
p
li
ed

to
a

se
t

o
f

b
en

ch
m

a
rk

s.
C

o
m

p
u
ta

ti
o
n

ti
m

es
a
re

in
se

co
n
d
s

a
n
d

m
em

o
ry

u
sa

g
es

in
M

B
,

u
n
le

ss
o
th

er
w

is
e

sp
ec

ifi
ed

.
S
p
ec

ifi
ca

ti
o
n
s:

S
fo

r
sa

fe
ty

,
R

fo
r

re
a
ch

a
b
il
it
y,

a
n
d
R

−
A

fo
r

re
a
ch

-w
h
il
e-

av
o
id

.
B

A
S

st
a
n
d
s

fo
r

B
u
il
d
in

g
A

u
to

m
a
ti

o
n

S
y
st

em
.

W
e

si
g
n
if
y

th
e

sy
n
th

es
is

ti
m

es
u
si

n
g

th
e

G
L
P

K
L
ib

ra
ry

w
it

h
“
a
”

a
n
d

th
e

sy
n
th

es
is

ti
m

es
b
a
se

d
o
n

th
e

so
rt

in
g

m
et

h
o
d

fr
o
m

[3
7
,

L
em

m
a

7
]

w
it

h
“
b
”
.

N
o
te

th
a
t

“
∗ ”

in
d
ic

a
te

s
p
o
ss

ib
le

a
b
so

rb
in

g
st

a
te

s:
in

th
is

ca
se

a
fi
n
it

e
h
o
ri

zo
n

ru
n

is
co

n
d
u
ct

ed
w

it
h

a
co

n
v
er

g
en

t
n
u
m

b
er

o
f

st
ep

s,
w

h
er

e
a
lg

o
ri

th
m

ti
m

es
a
re

a
g
g
re

g
a
te

d
(s

ee
R

em
a
rk

2
).

In
4
D

B
A

S
b
en

ch
m

a
rk

,
u
si

n
g

th
e

G
L
P

K
li
b
ra

ry
,
co

n
tr

o
ll
er

sy
n
th

es
is

fo
r

a
fi
n
it

e
h
o
ri

zo
n

o
f
1
0

st
ep

s
is

co
m

p
u
te

d
in

4
.6

6
se

co
n
d
s,

w
h
il
e

it
ta

k
es

ov
er

6
h
o
u
rs

fo
r

th
e

in
fi
n
it

e
h
o
ri

zo
n

to
co

n
v
er

g
e.

T
h
e

to
ta

l
ti

m
e

fo
r

th
e

a
b
st

ra
ct

io
n

a
n
d

sy
n
th

es
is

is
co

m
p
u
te

d
a
s

th
e

su
m

o
f

th
e

ti
m

es
fo

r
T̂
m

in
,T̂

m
a
x
,R̂

m
in

,R̂
m
a
x
,Â

m
in

,Â
m
a
x

a
n
d

o
n
e

o
f
th

e
tw

o
d
iff

er
en

t
m

et
h
o
d

ti
m

es
fo

r
C.

C
a
se

S
tu

d
y

S
p
ec

T̂
m

in
T̂
m
a
x

R̂
m

in
R̂

m
a
x

Â
m

in
Â

m
a
x

C
|X̂

|
|Û

|
|Ŵ

||
X̂

×
Û

×
Ŵ

|t
im

e
ti
m
e

m
em

ti
m
e

ti
m
e

m
em

ti
m
e

ti
m
e

m
em

ti
m
ea

ti
m
eb

m
em

2
D

R
o
b
o
t

R
4
4
1

1
2
1

0
5
3
,3
6
1

0
.6
0

1
.5
8

1
7
4
.8

0
.0
9

0
.2
9
4

4
.5

0
.0
1
6

0
.0
1
5

4
.5

7
.3
4

8
.5
3

0
.0
2

2
D

R
o
b
o
t

R
4
4
1

1
2
1

1
1

5
8
6
,9
7
1

5
.9

1
5
.6

1
.9

G
B

0
.2
5
1

1
.1
0

6
.5
8

0
.0
4

0
.0
4

6
.5
8

6
5
.7

3
3
0

0
.0
2

2
D

R
o
b
o
t

R
−

A
1
,6
8
1

4
4
1

0
7
4
1
,3
2
1

2
0
.7

5
9
.8

8
.8

G
B

0
.7
8

2
.5
1

6
1
.4

1
.8
6

1
.8
8

6
1
.4

1
,5
4
9

1
,0
4
7

0
.0
8

2
D

R
o
b
o
t

R
−

A
1
,6
8
1

4
4
1

1
1

8
,1
5
4
,5
3
1

2
2
7

6
7
5

9
7
.2

G
B

7
.4
6

2
2
.0

2
7
4

2
1
.2

2
2
.6

2
7
4

5
.6
6
h

8
.4
6
h

0
.0
8

3
D

V
eh

ic
le

R
−

A
7
,9
3
8

3
0

0
2
3
8
,1
4
0

8
9
.1

1
1
4

7
.4
2
G
B

4
4
.6

4
6
.6

2
.9
1
G
B

4
.5
3

4
.9
7

2
6
4

3
.6
9
h

2
8
6

0
.6
1

3
D

V
eh

ic
le

R
−

A
1
5
,4
3
5

9
9

0
1
,5
2
8
,0
6
5

1
,0
0
4

1
,3
4
0

9
2
.6

G
B

5
3
4

5
5
1

3
6
.3

G
B

5
1
.8

4
6
.5

3
.3

G
B

>
2
4
h

5
,9
3
3

1
.2
2

3
D

R
o
o
m
T
em

p
S

9
,2
6
1

3
6

0
3
3
3
,3
9
6

1
.5
1

7
8
.5

2
4
.7

G
B

–
–

–
0
.0
1
5

0
.0
1
4

2
.7

1
3
6

∗
1
5
4

∗
0
.5
2

4
D

B
A
S

S
1
,2
2
5

4
0

4
,9
0
0

0
.8
9

1
.3
3

4
8
.0
2

–
–

–
0
.0
0
4

0
.0
0
7

0
.0
4

6
.3
7
h

∗
3
,0

3
8

∗
0
.0
7

5
D

R
o
o
m
T
em

p
S

7
,7
7
6

3
6

0
2
7
9
,9
3
6

1
.2

1
6
7
.6

1
7
.4

G
B

–
–

–
0
.2
1

0
.2
4

2
.2
4

9
7
.8
8

∗
1
1
1
.5

∗
0
.5
6

7
D

B
A
S

S
1
0
7
,1
6
3

0
0

1
0
7
,1
6
3

1
.4
7
h

2
.0
3
h

9
1
.9

G
B

–
–

–
0
.5
0
1

0
.1
3
9

0
.8
6

>
2
4
h

>
2
4
h

7
.7

1
4
D

C
a
se

S
1
6
,3
8
4

0
0

1
6
,3
8
4

6
9
9

9
8
7

2
.1
5
G
B

–
–

–
0
.0
4
1

0
.2
0
1

0
.1
3

6
2
3

6
7
.7

2
.1

264 B. Wooding and A. Lavaei

Table 2. Execution times for controller synthesis, comparing the solving of the lin-
ear program in (5) using GNU Linear Programming Kit (GLPK) against the sorting
method from [37, Lemma 7]. The comparison is conducted on both a CPU (Intel i9-
12900) and a GPU (NVIDIA RTX A4000), with times reported in seconds. The symbol
“∗” denotes that a finite horizon of 10 seconds was utilized for the case study synthesis.

Case Study Spec GLPK Library Sorted LP Method

|X̂| |Û | |Ŵ | |X̂ × Û × Ŵ | CPU i9 CPU i9 GPU RTX

4D BAS∗ S 1,225 4 0 4,900 23.2 0.38 0.53

3D RoomTemp∗ S 216 36 0 7,776 0.34 0.22 0.29

2D Robot R 441 121 0 53,361 13.07 2.26 5.2

5D RoomTemp∗ S 7,776 9 0 69,984 160 22.2 76.2

3D Vehicle R − A 7,938 30 0 238,140 >3.0 h 241 490

2D Robot R − A 1,681 441 0 741,321 1691 577 216

9 Conclusion

In this work, we developed the advanced software tool IMPaCT, which is the
first tool to exclusively construct IMC/IMDP abstraction and perform verifi-
cation and controller synthesis over infinite-horizon properties while providing
convergence guarantees. Developed in C++ using AdaptiveCpp, an independent
open-source implementation of SYCL, IMPaCT capitalizes on adaptive paral-
lelism across diverse CPUs/GPUs of the major hardware vendors, including Intel
and NVIDIA. We benchmarked IMPaCT across various physical case studies bor-
rowed from the ARCH tool competition, with its scalability further highlighted
through a 14D case study.

Data Availibility Statement. The artifact accompanying this paper is available at
https://zenodo.org/doi/10.5281/zenodo.11085098.

References

1. Abate, A., et al.: ARCH-COMP23 category report: stochastic models. In: Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH), EPiC Series in Computing, pp. 126–150. EasyChair (2023)

2. Abate, A., et al.: ARCH-COMP22 category report: stochastic models. EPiC Ser.
Comput. 90, 113–141 (2022)

3. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete-time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

4. Abate, A., et al.: ARCH-COMP20 Category Report: Stochastic Models (2020)
5. Alpay, A., Heuveline, V.: SYCL beyond OpenCL: the architecture, current state

and future direction of HipSYCL. In: Proceedings of the International Workshop
on OpenCL (2020)

https://zenodo.org/doi/10.5281/zenodo.11085098

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 265

6. Alpay, A., Heuveline, V.: One pass to bind them: the first single-pass SYCL com-
piler with unified code representation across backends. In: Proceedings of the 2023
International Workshop on OpenCL (2023)

7. Badings, T.S., Abate, A., Jansen, N., Parker, D., Poonawala, H.A., Stoelinga, M.:
Sampling-based robust control of autonomous systems with non-gaussian noise.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp.
9669–9678 (2022)

8. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
9. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-

ability of your model checker: interval iteration for Markov decision processes. In:
International Conference on Computer Aided Verification, pp. 160–180 (2017)

10. Belta, C., Yordanov, B., Gol, E.A.: Formal methods for discrete-time dynamical
systems, vol. 89 (2017)

11. Cauchi, N., Abate, A.: StocHy: automated verification and synthesis of stochas-
tic processes. In: 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (2019)

12. Chen, T., Han, T., Kwiatkowska, M.: On the complexity of model checking interval-
valued discrete time Markov chains. Inf. Process. Lett. 113(7), 210–216 (2013)

13. Delimpaltadakis, G., Lahijanian, M., Mazo, M., Laurenti, L.: Interval Markov deci-
sion processes with continuous action-spaces. In: Proceedings of the 26th ACM
International Conference on Hybrid Systems: Computation and Control, pp. 1–10
(2023)

14. Dutreix, M., Coogan, S.: Specification-guided verification and abstraction refine-
ment of mixed monotone stochastic systems. IEEE Trans. Autom. Control 66(7),
2975–2990 (2020)

15. Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision processes.
Artif. Intell. 122(1), 71–109 (2000)

16. Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of value
iteration. In: 8th International Workshop on Reachability Problems, pp. 125–137
(2014)

17. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci. 735, 111–131 (2018)

18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Formal Methods Syst.
Des. 43(2), 191–232 (2013)

19. Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski,
P.: Compositional bisimulation minimization for interval Markov decision pro-
cesses. In: 10th International Conference on Language and Automata Theory and
Applications, pp. 114–126 (2016)

20. Jiang, J., Zhao, Y., Coogan, S.: Safe learning for uncertainty-aware planning via
interval MDP abstraction. IEEE Control Syst. Lett. 6, 2641–2646 (2022)

21. Johnson, S.G.: The NLopt nonlinear-optimization package (2007). https://github.
com/stevengj/nlopt

22. Julius, A.A., Pappas, G.J.: Approximations of stochastic hybrid systems. IEEE
Trans. Autom. Control 54(6), 1193–1203 (2009)

23. Kallenberg, O.: Foundations of Modern Probability, vol. 3. Springer, Cham (2021)
24. Khaled, M., Zamani, M.: PFaces: an acceleration ecosystem for symbolic control.

In: Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, pp. 252–257 (2019)

https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

266 B. Wooding and A. Lavaei

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: 23rd International Conference on Computer Aided Verifica-
tion, pp. 585–591 (2011)

26. Lahijanian, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control 60(8), 2031–2045
(2015)

27. Lavaei, A., Khaled, M., Soudjani, S., Zamani, M.: AMYTISS: parallelized auto-
mated controller synthesis for large-scale stochastic systems. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 461–474. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 24

28. Lavaei, A., Soudjani, S., Abate, A., Zamani, M.: Automated verification and syn-
thesis of stochastic hybrid systems: a survey. Automatica 146 (2022)

29. Lavaei, A., Soudjani, S., Frazzoli, E., Zamani, M.: Constructing MDP abstractions
using data with formal guarantees. IEEE Control Syst. Lett. 7, 460–465 (2022)

30. Lavaei, A., Soudjani, S., Zamani, M.: From dissipativity theory to compositional
construction of finite Markov decision processes. In: Proceedings of the 21st ACM
International Conference on Hybrid Systems: Computation and Control, pp. 21–30
(2018)

31. Makhorin, A.: GLPK (GNU linear programming kit) (2008). http://www.gnu.org/
s/glpk/glpk.html

32. Mathiesen, F.B., Lahijanian, M., Laurenti, L.: IntervalMDP.jl: Accelerated Value
Iteration for Interval Markov Decision Processes (2024)

33. Rickard, L., Abate, A., Margellos, K.: Learning robust policies for uncertain para-
metric Markov decision processes. arXiv: 2312.06344 (2023)

34. Rowan, T.H.: Functional stability analysis of numerical algorithms. Ph.D. thesis,
Department of Computer Science, University of Texas at Austin (1990)

35. Sanderson, C., Curtin, R.: Armadillo: a template-based C++ library for linear
algebra. J. Open Source Softw. 1(2), 26 (2016)

36. Sanderson, C., Curtin, R.: A user-friendly hybrid sparse matrix class in C++. In:
6th International Conference on Mathematical Software, pp. 422–430 (2018)

37. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence
of uncertainties. In: 12th International Conference Tools and Algorithms for the
Construction and Analysis of Systems, pp. 394–410 (2006)

38. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: formal abstractions of
uncountable-state stochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

39. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Cham (2009)

40. The HDF Group: Hierarchical Data Format, version 5 (1997–2023). https://www.
hdfgroup.org/HDF5/

41. Tkachev, I., Mereacre, A., Katoen, J.P., Abate, A.: Quantitative automata-based
controller synthesis for non-autonomous stochastic hybrid systems. In: Proceedings
of the 16th ACM International Conference on Hybrid Systems: Computation and
Control, pp. 293–302 (2013)

42. Van Huijgevoort, B., Schön, O., Soudjani, S., Haesaert, S.: SySCoRe: synthesis
via stochastic coupling relations. In: Proceedings of the 26th ACM International
Conference on Hybrid Systems: Computation and Control, pp. 1–11 (2023)

43. Weininger, M., Meggendorfer, T., Křet́ınskỳ, J.: Satisfiability bounds for ω-regular
properties in bounded-parameter Markov decision processes. In: 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 2284–2291 (2019)

https://doi.org/10.1007/978-3-030-53291-8_24
http://www.gnu.org/s/glpk/glpk.html
http://www.gnu.org/s/glpk/glpk.html
http://arxiv.org/abs/2312.06344
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/

IMPaCT: IMDP Parallel Construction for Synthesis of Stochastic Systems 267

44. Wooding, B., Lavaei, A.: IMPaCT: Interval MDP Parallel Construction for Con-
troller Synthesis of Large-Scale Stochastic Systems (2024)

45. Zamani, M., Mohajerin Esfahani, P., Majumdar, R., Abate, A., Lygeros, J.: Sym-
bolic control of stochastic systems via approximately bisimilar finite abstractions.
IEEE Trans. Autom. Control 59(12), 3135–3150 (2014)

	IMPaCT: Interval MDP Parallel Construction for Controller Synthesis of Large-Scale STochastic Systems
	1 Introduction
	1.1 Original Contributions
	1.2 Related Literature
	1.3 Overview of IMPaCT

	2 Discrete-Time Stochastic Control Systems
	3 Interval Markov Decision Processes
	3.1 Complexity Analysis for Serial Construction of IMDP
	3.2 Temporal Logic Specifications

	4 Parallel Construction of IMDP
	4.1 Complexity Analysis for Parallel Construction of IMDP
	4.2 Low-Cost Abstraction

	5 Controller Synthesis with Interval Iteration
	6 Parallel Controller Synthesis with Interval Iteration
	7 Loading and Saving Files
	8 Benchmarking and Case Studies
	8.1 Comparisons

	9 Conclusion
	References

