IMPaCT: A Parallelized Software Tool for IMDP Construction and Controller Synthesis with Convergence Guarantees

Ben Wooding and Abolfazl Lavaei

School of Computing, Newcastle University

Constructing IMDP Matrices $\hat{\tau}_{min}, \hat{\tau}_{max}, \hat{R}_{min}, \hat{R}_{max}, \hat{A}_{min}, \hat{A}$ max

- 1. Construct finite abstraction via gridding procedure
- 2. Label target states $\hat{r} \in \mathcal{R}$, avoid states $\hat{a} \in \mathcal{A}$, and remaining states \hat{x}
- 3. $\hat{\tau}_{\text{min}}$ is min CDF for state-to-state transitions $\hat{x} \rightarrow \hat{x}$
- 4. \hat{R}_{min} is min CDF for state-to-target-states transitions $\hat{x} \rightarrow \mathcal{R}$
- 5. \hat{A}_{min} is min CDF for state-to-avoid-states transitions $\hat{x} \rightarrow \mathcal{A}$
- 6. Compute $\hat{\mathcal{T}}_{\mathsf{max}}, \hat{\mathcal{R}}_{\mathsf{max}},$ and $\hat{\mathcal{A}}_{\mathsf{max}}$ similarly but with max CDF

Evolution of the state of Σ:

$$
\Sigma: x(k+1) = f(x(k), \nu(k), w(k), \varsigma(k)), \qquad k \in \mathbb{N},
$$

▶ Default support for additive normal distributions

 \blacktriangleright f : $X \times U \times W \times V_{\varsigma} \rightarrow X$: Transition map

▶ Capacity for any arbitrary distribution via a custom user-defined distribution

Parallel Construction of IMDPs

Complexity Analysis

$$
O\left(\frac{2\kappa d}{\text{THREADS}}\right)
$$
, for $d = \left(n_{x_i}^n \times n_{u_j}^m \times n_{w_k}^p\right) \times n_{x_i}^n$,

where κ is complexity of nonlinear optimization algorithm chosen from NLopt list.

Low-Cost Abstraction

$$
\hat{\mathcal{T}}_{\max}(i,j)=0 \implies \hat{\mathcal{T}}_{\min}(i,j)=0,
$$

by computing $\hat{\mathcal{T}}_{\mathsf{max}}$ before $\hat{\mathcal{T}}_{\mathsf{min}}$, we can avoid costly optimizations for $\hat{\mathcal{T}}_{\mathsf{min}}$. We do the same low-cost abstraction for \hat{R}_{min} and \hat{A}_{min} .

Parallel Controller Synthesis with Convergence Guarantees

Interval Iteration for Infinite Horizon Convergence

The interval iteration algorithm solves two Bellman equations:

 $\int V'_0 = \delta_1 \hat{R} + \delta_2 \hat{A} + \hat{T} V_0,$ $V'_1 = \delta_1 \hat{R} + \delta_2 \hat{A} + \hat{T} V_1$,

to find the new probabilities of satisfying the specification.

- \triangleright δ_1 and δ_2 are specification dependent
- \triangleright V_0 and V_1 are updated to V'_0 and V'_1 each iteration

 \triangleright it terminates when the two vectors converge, $||V_1 - V_0||_{\infty} \leq \varepsilon$

A dynamic program is solved to acquire the optimal feasible solutions $\hat{\mathcal{T}}$, $\hat{\mathcal{R}}$, and \hat{A} , which minimize over the disturbance \hat{w} and maximize over the input \hat{u} :

max min optimize $\delta_1 \hat{R}(\hat{x}, \hat{u}, \hat{w}) + \delta_2 \hat{A}(\hat{x}, \hat{u}, \hat{w}) + \sum \delta_3(\hat{x}') \hat{T}(\hat{x}'|\hat{x}, \hat{u}, \hat{w})$

 $\forall \hat{\mathsf{x}}' \!\!\in\!\! \hat{\mathsf{X}}$

▶ We leverage IMPaCT across diverse real-world applications over (in)finite time

Figure: 4D Building Automation System fulfilling safety properties within 10 time steps, with 5 different noise realizations.

Table: Computation times are in seconds and memory usages in MB, unless otherwise specified, for a high performance computer with 2 AMD EPYC 7702 CPUs and 2TB RAM. S for safety, R for reachability, and R - A for reach-while-avoid. We signify the synthesis times using the GLPK Library with "a" and the synthesis times based on the sorting method with "^b". Note that "*" indicates possible absorbing states.

subject to the following constraints:

 $\hat{\mathcal{T}}_{\min}(\hat{x}'|\hat{x},\hat{u},\hat{w}) \leq \hat{\mathcal{T}}(\hat{x}'|\hat{x},\hat{u},\hat{w}) \leq \hat{\mathcal{T}}_{\max}(\hat{x}'|\hat{x},\hat{u},\hat{w}),$ $\hat{R}_{min}(\hat{x}, \hat{u}, \hat{w}) \leq \hat{R}(\hat{x}, \hat{u}, \hat{w}) \leq \hat{R}_{max}(\hat{x}, \hat{u}, \hat{w}),$ $\hat{A}_{min}(\hat{x}, \hat{u}, \hat{w}) \leq \hat{A}(\hat{x}, \hat{u}, \hat{w}) \leq \hat{A}_{max}(\hat{x}, \hat{u}, \hat{w}),$ $\hat{R}(\hat{x},\hat{u},\hat{w}) + \hat{A}(\hat{x},\hat{u},\hat{w}) + \sum \hat{T}(\hat{x}'|\hat{x},\hat{u},\hat{w}) = 1.$ $\forall \hat{\mathsf{x}}' \!\!\in\!\! \hat{\mathsf{X}}$

For finite horizon specifications, the traditional value iteration approach is sufficient.

Loading and Saving

IMPaCT uses HDF5, which has native support in MATLAB, R, Python, etc. In loading, the IMDP can be constructed elsewhere, but synthesized with IMPaCT.

horizons.

IMPaCT Examples: Diverse Real-World Applications

Figure: 2D Robot case study fulfilling reachability and reach-avoid properties with different noise realizations.

Since

Benchmarking: CPU Abstraction and Synthesis

 $\hat{u} \in \hat{U}$ $\hat{w} \in \hat{W}$ $\hat{R}, \hat{A}, \hat{T}$

Benchmarking: CPU vs. GPU Synthesis

Table: Execution times for controller synthesis, conducted on both a CPU (Intel i9-12900) and a GPU (NVIDIA RTX A4000), with times reported in seconds. "∗" denotes a finite horizon of 10 seconds.

