
IMPaCT: A Parallelized Software Tool for IMDP
Construction and Controller Synthesis with Convergence

Guarantees

Ben Wooding and Abolfazl Lavaei
School of Computing, Newcastle University

Discrete-Time Stochastic Control Systems

Σ = (X ,U,W , ς, f) :

▶ X ⊆ Rn: State set

▶ U ⊆ Rm: Input set

▶ W ⊆ Rp: Disturbance set

▶ ς : A sequence of i.i.d. random variables from a sample space Ω to a measurable
set Vς

ς := {ς(k) : Ω → Vς, k ∈ N};

▶ f : X × U × W × Vς → X : Transition map

Evolution of the state of Σ:

Σ : x(k + 1) = f (x(k), ν(k),w(k), ς(k)), k ∈ N,

▶ Default support for additive normal distributions

▶ Capacity for any arbitrary distribution via a custom user-defined distribution

Parallel Construction of IMDPs

Constructing IMDP Matrices T̂min, T̂max, R̂min, R̂max, Âmin, Âmax

1. Construct finite abstraction via gridding procedure

2. Label target states r̂ ∈ R, avoid states â ∈ A, and remaining states x̂
3. T̂min is min CDF for state-to-state transitions x̂ → x̂
4. R̂min is min CDF for state-to-target-states transitions x̂ → R
5. Âmin is min CDF for state-to-avoid-states transitions x̂ → A
6. Compute T̂max, R̂max, and Âmax similarly but with max CDF

Complexity Analysis

O(
2κd

threads
), for d = (nn

xi
× nm

uj
× np

wk
) × nn

xi
,

where κ is complexity of nonlinear optimization algorithm chosen from NLopt list.

Low-Cost Abstraction

Since
T̂max(i , j) = 0 =⇒ T̂min(i , j) = 0,

by computing T̂max before T̂min, we can avoid costly optimizations for T̂min. We
do the same low-cost abstraction for R̂min and Âmin.

Parallel Controller Synthesis with Convergence
Guarantees

Interval Iteration for Infinite Horizon Convergence

The interval iteration algorithm solves two Bellman equations:{
V ′

0 = δ1R̂ + δ2Â + T̂V0,

V ′
1 = δ1R̂ + δ2Â + T̂V1,

to find the new probabilities of satisfying the specification.

▶ δ1 and δ2 are specification dependent

▶ V0 and V1 are updated to V ′
0 and V ′

1 each iteration

▶ it terminates when the two vectors converge, ∥V1 − V0∥∞ ≤ ε

A dynamic program is solved to acquire the optimal feasible solutions T̂ , R̂, and
Â, which minimize over the disturbance ŵ and maximize over the input û:

max
û∈Û

min
ŵ∈Ŵ

optimize
R̂,Â,T̂

δ1R̂(x̂, û, ŵ)+δ2Â(x̂, û, ŵ)+
∑

∀x̂ ′∈X̂

δ3(x̂ ′)T̂ (x̂ ′|x̂, û, ŵ)

subject to the following constraints:

T̂min(x̂ ′|x̂, û, ŵ) ≤ T̂ (x̂ ′|x̂, û, ŵ) ≤ T̂max(x̂ ′|x̂, û, ŵ),

R̂min(x̂, û, ŵ) ≤ R̂(x̂, û, ŵ) ≤ R̂max(x̂, û, ŵ),

Âmin(x̂, û, ŵ) ≤ Â(x̂, û, ŵ) ≤ Âmax(x̂, û, ŵ),

R̂(x̂, û, ŵ) + Â(x̂, û, ŵ) +
∑

∀x̂ ′∈X̂

T̂ (x̂ ′|x̂, û, ŵ) = 1.

For finite horizon specifications, the traditional value iteration approach is sufficient.

Loading and Saving

IMPaCT uses HDF5, which has native support in MATLAB, R, Python, etc. In loading,
the IMDP can be constructed elsewhere, but synthesized with IMPaCT.

Main Contributions

▶ First tool to construct IMCs/IMDPs for large-scale discrete-time stochastic systems
while providing convergence guarantees;

▶ Use constructed IMCs/IMDPs for formal verification and controller synthesis - safety,
reachability, and reach-while-avoid properties over (in)finite horizon;

▶ Leverages interval iteration for convergence guarantees of optimal controller over
infinite horizons;

▶ Implemented in C++ and runs in parallel using AdaptiveCpp based on SYCL. It
provides automatic cross-platform flexibility, serving as a strong foundation for CPU
and GPU implementations;

▶ We leverage IMPaCT across diverse real-world applications over (in)finite time
horizons.

IMPaCT Examples: Diverse Real-World Applications

-10 -5 0 5 10
-10

-5

0

5

10

(a) 2D Robot - Reachability

-10 -5 0 5 10
-10

-5

0

5

10

(b) 2D Robot - Reach-Avoid

Figure: 2D Robot case study fulfilling reachability and reach-avoid properties with different
noise realizations.

0 2 4 6 8 10

19

20

21

0 2 4 6 8 10

19

20

21

0 2 4 6 8 10

30

32

34

36

0 2 4 6 8 10

30

32

34

36

Figure: 4D Building Automation System fulfilling safety properties within 10 time steps, with 5
different noise realizations.

Benchmarking: CPU Abstraction and Synthesis

Table: Computation times are in seconds and memory usages in MB, unless otherwise specified, for a high
performance computer with 2 AMD EPYC 7702 CPUs and 2TB RAM. S for safety, R for reachability, and
R − A for reach-while-avoid. We signify the synthesis times using the GLPK Library with “a” and the
synthesis times based on the sorting method with “b”. Note that “∗” indicates possible absorbing states.

Case Study Spec |X̂ | |Û| |Ŵ | |X̂ × Û × Ŵ | Abstraction mem Synthesisa Synthesisb mem

2D Robot R 441 121 0 53,361 2.60 368 7.34 8.53 0.02

2D Robot R 441 121 11 586,971 22.9 3.8GB 65.7 330 0.02

2D Robot R − A 1,681 441 0 741,321 87.5 17.7GB 1,549 1,047 0.08

2D Robot R − A 1,681 441 11 8,154,531 975 195GB 5.66hr 8.46hr 0.08

3D Vehicle R − A 7,938 30 0 238,140 304 21.2GB 3.69hr 286 0.61

3D Vehicle R − A 15,435 99 0 1,528,065 3,527 264GB >24hr 5,933 1.22

3D RoomTemp S 9,261 36 0 333,396 80.0 49.4GB 136∗ 154∗ 0.52

4D BAS S 1,225 4 0 4,900 2.23 48.1 6.37hr∗ 3,038∗ 0.07

5D RoomTemp S 7,776 36 0 279,936 169 34.8GB 97.88∗ 111.5∗ 0.56

7D BAS S 107,163 0 0 107,163 3.5hr 184GB >24hr >24hr 7.7

14D Case S 16,384 0 0 16,384 1,686 4.3GB 623 67.7 2.1

Benchmarking: CPU vs. GPU Synthesis

Table: Execution times for controller synthesis, conducted on both a CPU (Intel i9-12900) and a GPU
(NVIDIA RTX A4000), with times reported in seconds. “∗” denotes a finite horizon of 10 seconds.

Case Study Spec GLPK Library Sorted LP Method

|X̂ | |Û| |Ŵ | |X̂ × Û × Ŵ | CPU i9 CPU i9 GPU RTX

4D BAS∗ S 1,225 4 0 4,900 23.2 0.38 0.53

3D RoomTemp∗ S 216 36 0 7,776 0.34 0.22 0.29

2D Robot R 441 121 0 53,361 13.07 2.26 5.2

5D RoomTemp∗ S 7,776 9 0 69,984 160 22.2 76.2

3D Vehicle R − A 7,938 30 0 238,140 >3.0hr 241 490

2D Robot R − A 1,681 441 0 741,321 1691 577 216

1 / 1

